The Procrustes-based perturbation model (Goodall in J R Stat Soc Ser B Methodol 53(2):285–321, 1991) allows minimization of the Frobenius distance between matrices by similarity transformation. However, it suffers from non-identifiability, critical interpretation of the transformed matrices, and inapplicability in high-dimensional data. We provide an extension of the perturbation model focused on the high-dimensional data framework, called the ProMises (Procrustes von Mises–Fisher) model. The ill-posed and interpretability problems are solved by imposing a proper prior distribution for the orthogonal matrix parameter (i.e., the von Mises–Fisher distribution) which is a conjugate prior, resulting in a fast estimation process. Furthermore, we present the Efficient ProMises model for the high-dimensional framework, useful in neuroimaging, where the problem has much more than three dimensions. We found a great improvement in functional magnetic resonance imaging connectivity analysis because the ProMises model permits incorporation of topological brain information in the alignment’s estimation process.
Procrustes Analysis for High-Dimensional Data / Andreella, Angela; Finos, Livio. - In: PSYCHOMETRIKA. - ISSN 0033-3123. - 87:4(2022), pp. 1422-1438. [10.1007/s11336-022-09859-5]
Procrustes Analysis for High-Dimensional Data
Andreella, Angela
Primo
;
2022-01-01
Abstract
The Procrustes-based perturbation model (Goodall in J R Stat Soc Ser B Methodol 53(2):285–321, 1991) allows minimization of the Frobenius distance between matrices by similarity transformation. However, it suffers from non-identifiability, critical interpretation of the transformed matrices, and inapplicability in high-dimensional data. We provide an extension of the perturbation model focused on the high-dimensional data framework, called the ProMises (Procrustes von Mises–Fisher) model. The ill-posed and interpretability problems are solved by imposing a proper prior distribution for the orthogonal matrix parameter (i.e., the von Mises–Fisher distribution) which is a conjugate prior, resulting in a fast estimation process. Furthermore, we present the Efficient ProMises model for the high-dimensional framework, useful in neuroimaging, where the problem has much more than three dimensions. We found a great improvement in functional magnetic resonance imaging connectivity analysis because the ProMises model permits incorporation of topological brain information in the alignment’s estimation process.File | Dimensione | Formato | |
---|---|---|---|
s11336-022-09859-5.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione