Quanvolutional neural networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of traditional convolution. Unfortunately, the qubit's reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this article, we aim at investigating the propagation of logical-shift errors (i.e., the unexpected modification of the qubit state) in QNNs. We propose a bottom-up evaluation reporting data from 13 322 547 200 logical-shift injections. We characterize the error propagation in the quantum circuit implementing a single convolution and then in various designs of the same QNN, varying the dataset and the network depth. We track the logical-shift error propagation through the qubits, channels, and subgrids, identifying the faults that are more likely to cause misclassifications. We found that up to 10% of the injections in the quanvolutional layer cause misclassification and even logical-shifts of small magnitude can be sufficient to disturb the network functionality. Our detailed analysis shows that corruptions in the qubits' state that alter their probability amplitude are more critical than the ones altering their phase, that some object classes are more likely than others to be corrupted, that the criticality of subgrids depends on the dataset, and that the control qubits, once corrupted, are more likely to modify the QNN output than the target qubits.

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks / Vallero, M.; Dri, E.; Giusto, E.; Montrucchio, B.; Rech, P.. - In: IEEE TRANSACTIONS ON QUANTUM ENGINEERING. - ISSN 2689-1808. - 5:(2024), pp. 1-14. [10.1109/TQE.2024.3372880]

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

Vallero M.;Rech P.
2024-01-01

Abstract

Quanvolutional neural networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of traditional convolution. Unfortunately, the qubit's reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this article, we aim at investigating the propagation of logical-shift errors (i.e., the unexpected modification of the qubit state) in QNNs. We propose a bottom-up evaluation reporting data from 13 322 547 200 logical-shift injections. We characterize the error propagation in the quantum circuit implementing a single convolution and then in various designs of the same QNN, varying the dataset and the network depth. We track the logical-shift error propagation through the qubits, channels, and subgrids, identifying the faults that are more likely to cause misclassifications. We found that up to 10% of the injections in the quanvolutional layer cause misclassification and even logical-shifts of small magnitude can be sufficient to disturb the network functionality. Our detailed analysis shows that corruptions in the qubits' state that alter their probability amplitude are more critical than the ones altering their phase, that some object classes are more likely than others to be corrupted, that the criticality of subgrids depends on the dataset, and that the control qubits, once corrupted, are more likely to modify the QNN output than the target qubits.
2024
Vallero, M.; Dri, E.; Giusto, E.; Montrucchio, B.; Rech, P.
Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks / Vallero, M.; Dri, E.; Giusto, E.; Montrucchio, B.; Rech, P.. - In: IEEE TRANSACTIONS ON QUANTUM ENGINEERING. - ISSN 2689-1808. - 5:(2024), pp. 1-14. [10.1109/TQE.2024.3372880]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/434274
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex 6
social impact