In fiber reinforced composite materials, the interfacial strength between the fibers and the matrix plays a key role in controlling the stress transfer and damage mechanisms of the composite. In this study, CO2 laser surface treatment of the fibers was investigated as a potential sustainable substitute for conventional chemical treatments, that can be costly and have negative envi- ronmental effects. The influence of the laser treatment on basalt fiber fabric was comprehensively investigated. The fibers were subjected to different laser power levels and characterized from a morphological and mechanical point of view. From optical and scanning electron microscopy, it was observed that the treated fibers manifested increased surface roughness along with spots of fused and bonded fibers. Individual treated fibers exhibited improved tensile proper- ties with increased values of scale parameter (by about 21%) in the case of a laser power equal to 1.04 W/mm2, and no substantial changes in Young's mod- ulus. The treated fibers were subsequently used in the preparation of epoxy- based microcomposites, and microdebonding tests revealed an increase in the interfacial shear strength (IFSS) up to 8%. Therefore, this work proved that a laser surface treatment of basalt fibers is a valid alternative to conventional fiber surface modification to enhance the mechanical compatibility between fibers and matrix, and therefore to improve the mechanical performances of basalt fiber composites.
Influence of CO2 laser surface treatment of basalt fibers on the mechanical properties of epoxy/basalt composites / Pozueco, Sergio; Simonini, Laura; Mahmood, Haroon; Rigotti, Daniele; Kakkonen, Markus; Riveiro, Antonio; Comesaña, Rafael; Pou, Juan; Tanhuanpää, Olli; Kanerva, Mikko; Sarlin, Essi; Kallio, Pasi; Pegoretti, Alessandro. - In: POLYMER COMPOSITES. - ISSN 0272-8397. - ELETTRONICO. - 45:12(2024), pp. 10965-10975. [10.1002/pc.28524]
Influence of CO2 laser surface treatment of basalt fibers on the mechanical properties of epoxy/basalt composites
Simonini, Laura;Mahmood, Haroon
;Rigotti, Daniele;Pegoretti, Alessandro
2024-01-01
Abstract
In fiber reinforced composite materials, the interfacial strength between the fibers and the matrix plays a key role in controlling the stress transfer and damage mechanisms of the composite. In this study, CO2 laser surface treatment of the fibers was investigated as a potential sustainable substitute for conventional chemical treatments, that can be costly and have negative envi- ronmental effects. The influence of the laser treatment on basalt fiber fabric was comprehensively investigated. The fibers were subjected to different laser power levels and characterized from a morphological and mechanical point of view. From optical and scanning electron microscopy, it was observed that the treated fibers manifested increased surface roughness along with spots of fused and bonded fibers. Individual treated fibers exhibited improved tensile proper- ties with increased values of scale parameter (by about 21%) in the case of a laser power equal to 1.04 W/mm2, and no substantial changes in Young's mod- ulus. The treated fibers were subsequently used in the preparation of epoxy- based microcomposites, and microdebonding tests revealed an increase in the interfacial shear strength (IFSS) up to 8%. Therefore, this work proved that a laser surface treatment of basalt fibers is a valid alternative to conventional fiber surface modification to enhance the mechanical compatibility between fibers and matrix, and therefore to improve the mechanical performances of basalt fiber composites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione