Many stiff biological materials exhibiting outstanding compressive strength/weight ratio are characterized by high porosity, spanning different size-scales, typical examples being bone and wood. A successful bio-mimicking of these materials is provided by a recently obtained apatite, directly produced through a biomorphic transformation of natural wood and thus inheriting its highly hierarchical structure. This unique apatite (but also wood and bone) is characterized by two major distinct populations of differently-sized cylindrical voids, a porosity shown in the present paper to influence failure, both in terms of damage growth and fracture nucleation and propagation. This statement follows from failure analysis, developed through in-silico generation of artificial samples (reproducing the two-scale porosity of the material) and subsequent finite element modelling of damage, implemented with phase-field treatment for fracture growth. It is found that small voids promote damage nucleation and enhance bridging of macro-pores by micro-crack formation, while macro-pores influence the overall material response and drive the propagation of large fractures. Our results explain the important role of multiscale porosity characterizing stiff biological materials and lead to a new design paradigm, by introducing an in-silico tool to implement bio-mimicking in new artificial materials with brittle behaviour, such as carbide or ceramic foams.
Phase-Field Modelling of Failure in Ceramics with Multiscale Porosity / Cavuoto, R.; Lenarda, P.; Tampieri, A.; Bigoni, D.; Paggi, M.. - In: MATERIALS & DESIGN. - ISSN 0264-1275. - ELETTRONICO. - 2024, 238:238(2024), pp. 1-13. [10.1016/j.matdes.2024.112708]
Phase-Field Modelling of Failure in Ceramics with Multiscale Porosity
Bigoni, D.
;
2024-01-01
Abstract
Many stiff biological materials exhibiting outstanding compressive strength/weight ratio are characterized by high porosity, spanning different size-scales, typical examples being bone and wood. A successful bio-mimicking of these materials is provided by a recently obtained apatite, directly produced through a biomorphic transformation of natural wood and thus inheriting its highly hierarchical structure. This unique apatite (but also wood and bone) is characterized by two major distinct populations of differently-sized cylindrical voids, a porosity shown in the present paper to influence failure, both in terms of damage growth and fracture nucleation and propagation. This statement follows from failure analysis, developed through in-silico generation of artificial samples (reproducing the two-scale porosity of the material) and subsequent finite element modelling of damage, implemented with phase-field treatment for fracture growth. It is found that small voids promote damage nucleation and enhance bridging of macro-pores by micro-crack formation, while macro-pores influence the overall material response and drive the propagation of large fractures. Our results explain the important role of multiscale porosity characterizing stiff biological materials and lead to a new design paradigm, by introducing an in-silico tool to implement bio-mimicking in new artificial materials with brittle behaviour, such as carbide or ceramic foams.File | Dimensione | Formato | |
---|---|---|---|
Phase-field.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
5.76 MB
Formato
Adobe PDF
|
5.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione