Background and objective: This article uses three different probabilistic convolutional architectures applied to ultrasound image analysis for grading Fatty Liver Content (FLC) in Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) patients. Steatosis is a new silent epidemic and its accurate measurement is an impelling clinical need, not only for hepatologists, but also for experts in metabolic and cardiovascular diseases. This paper aims to provide a robust comparison between different uncertainty quantification strategies to identify advantages and drawbacks in a real clinical setting. Methods: We used a classical Convolutional Neural Network, a Monte Carlo Dropout, and a Bayesian Convolutional Neural Network with the goal of not only comparing the goodness of the predictions, but also to have access to an evaluation of the uncertainty associated with the outputs. Results: We found that even if the prediction based on a single ultrasound view is reliable (relative RMSE ...

ANN uncertainty estimates in assessing fatty liver content from ultrasound data / Del Corso, G.; Pascali, M. A.; Caudai, C.; De Rosa, L.; Salvati, A.; Mancini, M.; Ghiadoni, L.; Bonino, F.; Brunetto, M. R.; Colantonio, S.; Faita, F.. - In: COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. - ISSN 2001-0370. - 24:(2024), pp. 603-610. [10.1016/j.csbj.2024.09.021]

ANN uncertainty estimates in assessing fatty liver content from ultrasound data

L. De Rosa;
2024-01-01

Abstract

Background and objective: This article uses three different probabilistic convolutional architectures applied to ultrasound image analysis for grading Fatty Liver Content (FLC) in Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) patients. Steatosis is a new silent epidemic and its accurate measurement is an impelling clinical need, not only for hepatologists, but also for experts in metabolic and cardiovascular diseases. This paper aims to provide a robust comparison between different uncertainty quantification strategies to identify advantages and drawbacks in a real clinical setting. Methods: We used a classical Convolutional Neural Network, a Monte Carlo Dropout, and a Bayesian Convolutional Neural Network with the goal of not only comparing the goodness of the predictions, but also to have access to an evaluation of the uncertainty associated with the outputs. Results: We found that even if the prediction based on a single ultrasound view is reliable (relative RMSE ...
2024
Del Corso, G.; Pascali, M. A.; Caudai, C.; De Rosa, L.; Salvati, A.; Mancini, M.; Ghiadoni, L.; Bonino, F.; Brunetto, M. R.; Colantonio, S.; Faita, F....espandi
ANN uncertainty estimates in assessing fatty liver content from ultrasound data / Del Corso, G.; Pascali, M. A.; Caudai, C.; De Rosa, L.; Salvati, A.; Mancini, M.; Ghiadoni, L.; Bonino, F.; Brunetto, M. R.; Colantonio, S.; Faita, F.. - In: COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. - ISSN 2001-0370. - 24:(2024), pp. 603-610. [10.1016/j.csbj.2024.09.021]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/432210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact