This article deals with the nondestructive testing and evaluation (NDT/NDE) of dielectric structures through a sparseness-promoting probabilistic microwave imaging (MI) method. Prior information on both the unperturbed scenario and the class of imaged targets is profitably exploited to formulate the inverse scattering problem (ISP) at hand within a differential contrast source inversion (CSI) framework. The imaging process is then efficiently completed by applying a customized Bayesian compressive sensing (BCS) inversion strategy. Selected numerical and experimental results are provided to assess the effectiveness of the proposed imaging method also in comparison with competitive state-of-the-art alternatives.

Microwave NDT/NDE Through Differential Bayesian Compressive Sensing / Salucci, Marco; Poli, Lorenzo; Gottardi, Giorgio; Oliveri, Giacomo; Tosi, Luca; Massa, Andrea. - In: IEEE OPEN JOURNAL OF INSTRUMENTATION AND MEASUREMENT. - ISSN 2768-7236. - STAMPA. - 2024, 3:(2024), pp. 1-15. [10.1109/ojim.2024.3412205]

Microwave NDT/NDE Through Differential Bayesian Compressive Sensing

Salucci, Marco;Poli, Lorenzo;Gottardi, Giorgio;Oliveri, Giacomo;Tosi, Luca;Massa, Andrea
2024-01-01

Abstract

This article deals with the nondestructive testing and evaluation (NDT/NDE) of dielectric structures through a sparseness-promoting probabilistic microwave imaging (MI) method. Prior information on both the unperturbed scenario and the class of imaged targets is profitably exploited to formulate the inverse scattering problem (ISP) at hand within a differential contrast source inversion (CSI) framework. The imaging process is then efficiently completed by applying a customized Bayesian compressive sensing (BCS) inversion strategy. Selected numerical and experimental results are provided to assess the effectiveness of the proposed imaging method also in comparison with competitive state-of-the-art alternatives.
2024
Salucci, Marco; Poli, Lorenzo; Gottardi, Giorgio; Oliveri, Giacomo; Tosi, Luca; Massa, Andrea
Microwave NDT/NDE Through Differential Bayesian Compressive Sensing / Salucci, Marco; Poli, Lorenzo; Gottardi, Giorgio; Oliveri, Giacomo; Tosi, Luca; Massa, Andrea. - In: IEEE OPEN JOURNAL OF INSTRUMENTATION AND MEASUREMENT. - ISSN 2768-7236. - STAMPA. - 2024, 3:(2024), pp. 1-15. [10.1109/ojim.2024.3412205]
File in questo prodotto:
File Dimensione Formato  
Salucci.2024.b.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/423051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact