with green tea, as an environmentally sustainable and adaptable pigment for wood coatings. Additionally, the effectiveness of the bio-based additive, in conjunction with a specialized UV absorber to enhance color consistency under harsh conditions, was examined. Aesthetic impact was analyzed through evaluations of color, gloss, and surface roughness. Moreover, the stability of the wax-based powder in aggressive environments was characterized by subjecting samples to UVB and climatic chamber exposure. The barrier properties of the additive were investigated using a water uptake test and contact angle measurements, while liquid resistance tests were conducted to gauge its efficacy. Lastly, the protective role of the bio-based additive was analyzed through scrub tests and surface analysis using scanning electron microscopy. Findings underscored the versatility of the green additive as a multifunctional pigment, offering not only color enhancement but also robust protective capabilities. Its unique combination of color, mattifying effect, barrier enhancement, and protective function position it as an attractive bio-based additive for wood coatings with functional applications.
Introducing a Novel Application of Bio-Based Fillers Based on Rice Bran Wax Infused with Green Tea: Transitioning from a Cosmetic Additive to a Multifunctional Pigment for Wood Paints / Calovi, Massimo; Rossi, Stefano. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 14:13(2024), p. 5895. [10.3390/app14135895]
Introducing a Novel Application of Bio-Based Fillers Based on Rice Bran Wax Infused with Green Tea: Transitioning from a Cosmetic Additive to a Multifunctional Pigment for Wood Paints
Calovi, Massimo
Primo
;Rossi, StefanoUltimo
2024-01-01
Abstract
with green tea, as an environmentally sustainable and adaptable pigment for wood coatings. Additionally, the effectiveness of the bio-based additive, in conjunction with a specialized UV absorber to enhance color consistency under harsh conditions, was examined. Aesthetic impact was analyzed through evaluations of color, gloss, and surface roughness. Moreover, the stability of the wax-based powder in aggressive environments was characterized by subjecting samples to UVB and climatic chamber exposure. The barrier properties of the additive were investigated using a water uptake test and contact angle measurements, while liquid resistance tests were conducted to gauge its efficacy. Lastly, the protective role of the bio-based additive was analyzed through scrub tests and surface analysis using scanning electron microscopy. Findings underscored the versatility of the green additive as a multifunctional pigment, offering not only color enhancement but also robust protective capabilities. Its unique combination of color, mattifying effect, barrier enhancement, and protective function position it as an attractive bio-based additive for wood coatings with functional applications.File | Dimensione | Formato | |
---|---|---|---|
applsci-14-05895-articolo completo.pdf
accesso aperto
Descrizione: articol ocompleto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione