A better understanding of crop phenotype under dynamic environmental conditions will help inform the development of new cultivars with superior adaptation to constantly changing field conditions. Recent research has shown that optimising photosynthetic and stomatal conductance traits holds promise for improved crop performance. However, standard phenotyping tools such as gas-exchange systems are limited by their throughput. In this work, a novel approach based on a bespoke gas-exchange chamber allowing combined measurement of the quantum yield of photosystem II (PSII) with an estimation of stomatal conductance via thermal imaging, was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes, that were a sub-set of a multi-founder experimental population. Datasets were further supplemented by measurement of photosynthetic capacity and stomatal density. First, we showed that measurement of stomatal traits using our dual imaging system compared to standard IRGA methods showed good agreement between the two methods (R2=0.86) for the rapidity of stomatal opening (Ki), with the dual-imager method resulting in less intra-genotype variation. Using the dual-imaging methods, and traditional approaches we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance under low (gsmin) and high (gsmax) light intensity, and the operating efficiency of PSII (Fq’/Fm’), highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combination of preferable traits (i.e. inherently high gsmax, low Ki and maintained leaf evaporative cooling) are present in wheat. This work highlights for the first time the effectiveness of thermal imaging in screening dynamic stomatal conductance in a large panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimisation within future breeding programs.

Exploring Natural Genetic Diversity in a Bread Wheat Multi-founder Population: Dual Imaging of Photosynthesis and Stomatal Kinetics / Faralli, Michele; Mellers, Greg; Wall, Shellie; Vialet-Chabrand, Silvere; Forget, Guillaume; Galle, Alexander; Van Rie, Jeron; Gardner, Keith A; Ober, Eric S; Cockram, James; Lawson, Tracy. - In: JOURNAL OF EXPERIMENTAL BOTANY. - ISSN 1460-2431. - 2024:(2024). [10.1093/jxb/erae233]

Exploring Natural Genetic Diversity in a Bread Wheat Multi-founder Population: Dual Imaging of Photosynthesis and Stomatal Kinetics

Faralli, Michele;
2024-01-01

Abstract

A better understanding of crop phenotype under dynamic environmental conditions will help inform the development of new cultivars with superior adaptation to constantly changing field conditions. Recent research has shown that optimising photosynthetic and stomatal conductance traits holds promise for improved crop performance. However, standard phenotyping tools such as gas-exchange systems are limited by their throughput. In this work, a novel approach based on a bespoke gas-exchange chamber allowing combined measurement of the quantum yield of photosystem II (PSII) with an estimation of stomatal conductance via thermal imaging, was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes, that were a sub-set of a multi-founder experimental population. Datasets were further supplemented by measurement of photosynthetic capacity and stomatal density. First, we showed that measurement of stomatal traits using our dual imaging system compared to standard IRGA methods showed good agreement between the two methods (R2=0.86) for the rapidity of stomatal opening (Ki), with the dual-imager method resulting in less intra-genotype variation. Using the dual-imaging methods, and traditional approaches we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance under low (gsmin) and high (gsmax) light intensity, and the operating efficiency of PSII (Fq’/Fm’), highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combination of preferable traits (i.e. inherently high gsmax, low Ki and maintained leaf evaporative cooling) are present in wheat. This work highlights for the first time the effectiveness of thermal imaging in screening dynamic stomatal conductance in a large panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimisation within future breeding programs.
2024
Faralli, Michele; Mellers, Greg; Wall, Shellie; Vialet-Chabrand, Silvere; Forget, Guillaume; Galle, Alexander; Van Rie, Jeron; Gardner, Keith A; Ober,...espandi
Exploring Natural Genetic Diversity in a Bread Wheat Multi-founder Population: Dual Imaging of Photosynthesis and Stomatal Kinetics / Faralli, Michele; Mellers, Greg; Wall, Shellie; Vialet-Chabrand, Silvere; Forget, Guillaume; Galle, Alexander; Van Rie, Jeron; Gardner, Keith A; Ober, Eric S; Cockram, James; Lawson, Tracy. - In: JOURNAL OF EXPERIMENTAL BOTANY. - ISSN 1460-2431. - 2024:(2024). [10.1093/jxb/erae233]
File in questo prodotto:
File Dimensione Formato  
erae233.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/415810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact