The indeterminate Hamburger moment problem is considered, jointly with all its real axis supported probability density functions. As a consequence of entropy functional concavity, out of such densities there is one which has largest entropy and that plays a fundamental role: we call it the largest entropy density. It is proved that the approximate Maximum Entropy (MaxEnt) densities constrained by an increasing number of moments converge in entropy to the largest entropy density where the value of its entropy can be finite or −∞.

Indeterminate Hamburger moment problem: Entropy convergence / Novi Inverardi, Pier Luigi; Tagliani, Aldo; Milev, Mariyan. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 212:(2024), p. 110155. [10.1016/j.spl.2024.110155]

Indeterminate Hamburger moment problem: Entropy convergence

Novi Inverardi, Pier Luigi
Primo
;
Tagliani, Aldo
Secondo
;
Milev, Mariyan
Ultimo
2024-01-01

Abstract

The indeterminate Hamburger moment problem is considered, jointly with all its real axis supported probability density functions. As a consequence of entropy functional concavity, out of such densities there is one which has largest entropy and that plays a fundamental role: we call it the largest entropy density. It is proved that the approximate Maximum Entropy (MaxEnt) densities constrained by an increasing number of moments converge in entropy to the largest entropy density where the value of its entropy can be finite or −∞.
2024
Novi Inverardi, Pier Luigi; Tagliani, Aldo; Milev, Mariyan
Indeterminate Hamburger moment problem: Entropy convergence / Novi Inverardi, Pier Luigi; Tagliani, Aldo; Milev, Mariyan. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 212:(2024), p. 110155. [10.1016/j.spl.2024.110155]
File in questo prodotto:
File Dimensione Formato  
Indeterminate Hamburger.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 497.38 kB
Formato Adobe PDF
497.38 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/415790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact