In the rapidly advancing field of quantum technologies, integrated quantum photonics merges quantum mechanics with photonics, promising breakthroughs in communication, sensing, computing, and security. This doctoral thesis investigates the generation of correlated photons via spontaneous four-wave mixing (sFWM) on silicon-based platforms. Through a comparative analysis of various intramodal and intermodal sources, the research focuses on two main areas: applications in sensing within the 2 μm region and the development of sources and other integrated structures in the visible-near infrared region for quantum algorithms, such as variational quantum eigensolver and boson sampler. For sensing, the study enhances quantum ghost spectroscopy to enable efficient gas detection using non-degenerate intermodal silicon sFWM. In the context of quantum simulation, silicon-nitride-based integrated photonic structures were realized to generate and manipulate quantum light within a photonic integrated circuit. Additionally, a proof-of-concept implementation of a two-qubit SWAP test in silicon nitride material showcased significant potential in quantum machine learning.

Correlated photon sources for quantum silicon photonics / Sanna, Matteo. - (2024 Jul 04), pp. 1-208.

Correlated photon sources for quantum silicon photonics

Sanna, Matteo
2024-07-04

Abstract

In the rapidly advancing field of quantum technologies, integrated quantum photonics merges quantum mechanics with photonics, promising breakthroughs in communication, sensing, computing, and security. This doctoral thesis investigates the generation of correlated photons via spontaneous four-wave mixing (sFWM) on silicon-based platforms. Through a comparative analysis of various intramodal and intermodal sources, the research focuses on two main areas: applications in sensing within the 2 μm region and the development of sources and other integrated structures in the visible-near infrared region for quantum algorithms, such as variational quantum eigensolver and boson sampler. For sensing, the study enhances quantum ghost spectroscopy to enable efficient gas detection using non-degenerate intermodal silicon sFWM. In the context of quantum simulation, silicon-nitride-based integrated photonic structures were realized to generate and manipulate quantum light within a photonic integrated circuit. Additionally, a proof-of-concept implementation of a two-qubit SWAP test in silicon nitride material showcased significant potential in quantum machine learning.
4-lug-2024
XXXVI
2023-2024
Fisica (29/10/12-)
Physics
Pavesi, Lorenzo
no
Inglese
File in questo prodotto:
File Dimensione Formato  
phd_unitn_Sanna_Matteo.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.13 MB
Formato Adobe PDF
7.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/414811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact