This research examines fuel choice for residential heating, with a particular focus on switching to natural gas from carbon intensive alternatives. In the context of reducing greenhouse gas emissions in the residential sector, fuel switching from coal and oil to natural gas for space heating is assessed as a potential policy option using Ireland as a case study. A range of building attributes and household characteristics are associated with fuel choice for household space heating, including distance to the gas network, which is inversely associated with the probability of gas connection. Distance decay effects are likely attributed to network connection fees, which are proportional to the connection distance. The impact of setting the marginal connection cost associated with distance to zero are simulated to examine emission and expenditure impacts across socio-economic groups. Up to 13% of unconnected properties are likely to respond to such an incentive, yielding a 3.9% reduction in greenhouse gas emissions and a 1.5% reduction in fuel expenditure relative to pre-policy levels of unconnected households within the study. Expenditure and emission impacts differ across socio-economic groups with the largest reductions expected to occur among semi-skilled/unskilled households, which are frequently among the least affluent households.
Access to and consumption of natural gas: Spatial and socio-demographic drivers / Curtis, J.; Tovar, M. A.; Grilli, G.. - In: ENERGY POLICY. - ISSN 0301-4215. - 143:(2020), p. 111614. [10.1016/j.enpol.2020.111614]
Access to and consumption of natural gas: Spatial and socio-demographic drivers
Grilli G.Ultimo
2020-01-01
Abstract
This research examines fuel choice for residential heating, with a particular focus on switching to natural gas from carbon intensive alternatives. In the context of reducing greenhouse gas emissions in the residential sector, fuel switching from coal and oil to natural gas for space heating is assessed as a potential policy option using Ireland as a case study. A range of building attributes and household characteristics are associated with fuel choice for household space heating, including distance to the gas network, which is inversely associated with the probability of gas connection. Distance decay effects are likely attributed to network connection fees, which are proportional to the connection distance. The impact of setting the marginal connection cost associated with distance to zero are simulated to examine emission and expenditure impacts across socio-economic groups. Up to 13% of unconnected properties are likely to respond to such an incentive, yielding a 3.9% reduction in greenhouse gas emissions and a 1.5% reduction in fuel expenditure relative to pre-policy levels of unconnected households within the study. Expenditure and emission impacts differ across socio-economic groups with the largest reductions expected to occur among semi-skilled/unskilled households, which are frequently among the least affluent households.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0301421520303505-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
593.5 kB
Formato
Adobe PDF
|
593.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione