In the current work, a rapid, selective, and sensitive technique was developed for the detection of Alizarin Red S (ARS) by applying poly leucine modified carbon paste electrode (PLMCPE). Electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM) were utilized to study the surface morphology of unmodified carbon paste electrode (UMCPE) and PLMCPE. The active surface area for UMCPE and PLMCPE was found to be 0.0012 cm2 and 0.0026 cm2 respectively. The electrochemical response of ARS at UMCPE and PLMCPE was analyzed using cyclic voltammetry (CV) in the potential window of 0.4 to 1.0 V. The cyclic voltammogram obtained for varying the pH of 0.2 M phosphate buffer (PB) solution showed maximum current for the oxidation of ARS at pH 6.5. The electrochemical reaction of ARS was found to be irreversible and adsorption controlled. The effect of variation of concentration of ARS on the oxidation peak current was evaluated using CV and linear scan voltammetry (LSV). A linear relationship between the concentration variation and current was obtained in the linear range of 1.5 μM-3.5 μM and 0.2 μM-5.0 μM for CV and LSV respectively. The limit of detection (LOD) of 0.68 μM for the CV method and 0.29 μM for the LSV method was exhibited by the developed sensor. The simultaneous study of ARS along with tartrazine (TZ) showed good selectivity for ARS. The interferents of foreign molecules showed no effect on the selectivity of the electrode. The applicability of PLMCPE on real samples gave good recovery ranging from 97.46-101.2%; hence, the sensor can be utilized on real samples. The developed sensor has good stability and sensitivity.
A Novel and Efficient Voltammetric Sensor for the Simultaneous Determination of Alizarin Red S and Tartrazine by Using Poly(leucine) Functionalized Carbon Paste Electrode / Moulya, K. P.; Manjunatha, J. G.; Osman, S. M.; Ataollahi, N.. - In: JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING. - ISSN 1532-4117. - 2024, 59:3(2024), pp. 103-112. [10.1080/10934529.2024.2339160]
A Novel and Efficient Voltammetric Sensor for the Simultaneous Determination of Alizarin Red S and Tartrazine by Using Poly(leucine) Functionalized Carbon Paste Electrode
Ataollahi N.
2024-01-01
Abstract
In the current work, a rapid, selective, and sensitive technique was developed for the detection of Alizarin Red S (ARS) by applying poly leucine modified carbon paste electrode (PLMCPE). Electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM) were utilized to study the surface morphology of unmodified carbon paste electrode (UMCPE) and PLMCPE. The active surface area for UMCPE and PLMCPE was found to be 0.0012 cm2 and 0.0026 cm2 respectively. The electrochemical response of ARS at UMCPE and PLMCPE was analyzed using cyclic voltammetry (CV) in the potential window of 0.4 to 1.0 V. The cyclic voltammogram obtained for varying the pH of 0.2 M phosphate buffer (PB) solution showed maximum current for the oxidation of ARS at pH 6.5. The electrochemical reaction of ARS was found to be irreversible and adsorption controlled. The effect of variation of concentration of ARS on the oxidation peak current was evaluated using CV and linear scan voltammetry (LSV). A linear relationship between the concentration variation and current was obtained in the linear range of 1.5 μM-3.5 μM and 0.2 μM-5.0 μM for CV and LSV respectively. The limit of detection (LOD) of 0.68 μM for the CV method and 0.29 μM for the LSV method was exhibited by the developed sensor. The simultaneous study of ARS along with tartrazine (TZ) showed good selectivity for ARS. The interferents of foreign molecules showed no effect on the selectivity of the electrode. The applicability of PLMCPE on real samples gave good recovery ranging from 97.46-101.2%; hence, the sensor can be utilized on real samples. The developed sensor has good stability and sensitivity.File | Dimensione | Formato | |
---|---|---|---|
DOC-20240413-WA0008..pdf
Solo gestori archivio
Descrizione: articolo
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione