This work establishes the existence and uniqueness of solutions to the initial-value problem for the geometric transport equation [Formula presented] in the class of k-dimensional integral or normal currents Tt (t being the time variable) under the natural assumption of Lipschitz regularity of the driving vector field b. Our argument relies crucially on the notion of decomposability bundle introduced recently by Alberti and Marchese. In the particular case of 0-currents, this also yields a new proof of the uniqueness for the continuity equation in the class of signed measures.

Existence and uniqueness for the transport of currents by Lipschitz vector fields / Bonicatto, Paolo; Del Nin, Giacomo; Rindler, Filip. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 286:7(2024), pp. 11031501-11031524. [10.1016/j.jfa.2024.110315]

Existence and uniqueness for the transport of currents by Lipschitz vector fields

Bonicatto, Paolo;
2024-01-01

Abstract

This work establishes the existence and uniqueness of solutions to the initial-value problem for the geometric transport equation [Formula presented] in the class of k-dimensional integral or normal currents Tt (t being the time variable) under the natural assumption of Lipschitz regularity of the driving vector field b. Our argument relies crucially on the notion of decomposability bundle introduced recently by Alberti and Marchese. In the particular case of 0-currents, this also yields a new proof of the uniqueness for the continuity equation in the class of signed measures.
2024
7
Bonicatto, Paolo; Del Nin, Giacomo; Rindler, Filip
Existence and uniqueness for the transport of currents by Lipschitz vector fields / Bonicatto, Paolo; Del Nin, Giacomo; Rindler, Filip. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 286:7(2024), pp. 11031501-11031524. [10.1016/j.jfa.2024.110315]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S002212362400003X-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 407.5 kB
Formato Adobe PDF
407.5 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact