In the setting of complete metric spaces, we prove that integral currents can be decomposed as a sum of indecomposable components. In the special case of one-dimensional integral currents, we also show that the indecomposable ones are exactly those associated with injective Lipschitz curves or injective Lipschitz loops, therefore extending Federer's characterisation to metric spaces. Moreover, some applications of our main results will be discussed.

Decomposition of integral metric currents / Bonicatto, Paolo; Del Nin, Giacomo; Pasqualetto, Enrico. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 282:7(2022), pp. 10937801-10937828. [10.1016/j.jfa.2021.109378]

Decomposition of integral metric currents

Bonicatto, Paolo;
2022-01-01

Abstract

In the setting of complete metric spaces, we prove that integral currents can be decomposed as a sum of indecomposable components. In the special case of one-dimensional integral currents, we also show that the indecomposable ones are exactly those associated with injective Lipschitz curves or injective Lipschitz loops, therefore extending Federer's characterisation to metric spaces. Moreover, some applications of our main results will be discussed.
2022
7
Bonicatto, Paolo; Del Nin, Giacomo; Pasqualetto, Enrico
Decomposition of integral metric currents / Bonicatto, Paolo; Del Nin, Giacomo; Pasqualetto, Enrico. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 282:7(2022), pp. 10937801-10937828. [10.1016/j.jfa.2021.109378]
File in questo prodotto:
File Dimensione Formato  
BDNP22.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 527.22 kB
Formato Adobe PDF
527.22 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact