Given a vector field ρ(1,b)∈Lloc1(R+×Rd,Rd+1) such that divt,x(ρ(1,b)) is a measure, we consider the problem of uniqueness of the representation η of ρ(1 , b) Ld+1 as a superposition of characteristics γ:(tγ-,tγ+)→Rd, γ˙ (t) = b(t, γ(t)). We give conditions in terms of a local structure of the representation η on suitable sets in order to prove that there is a partition of Rd+1 into disjoint trajectories ℘a, a∈ A, such that the PDE divt,x(uρ(1,b))∈M(Rd+1),u∈L∞(R+×Rd),can be disintegrated into a family of ODEs along ℘a with measure r.h.s. The decomposition ℘a is essentially unique. We finally show that b∈Lt1(BVx)loc satisfies this local structural assumption and this yields, in particular, the renormalization property for nearly incompressible BV vector fields.

A uniqueness result for the decomposition of vector fields in Rd / Bianchini, Stefano; Bonicatto, Paolo. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 220:1(2020), pp. 255-393. [10.1007/s00222-019-00928-8]

A uniqueness result for the decomposition of vector fields in Rd

Bianchini, Stefano;Bonicatto, Paolo
2020-01-01

Abstract

Given a vector field ρ(1,b)∈Lloc1(R+×Rd,Rd+1) such that divt,x(ρ(1,b)) is a measure, we consider the problem of uniqueness of the representation η of ρ(1 , b) Ld+1 as a superposition of characteristics γ:(tγ-,tγ+)→Rd, γ˙ (t) = b(t, γ(t)). We give conditions in terms of a local structure of the representation η on suitable sets in order to prove that there is a partition of Rd+1 into disjoint trajectories ℘a, a∈ A, such that the PDE divt,x(uρ(1,b))∈M(Rd+1),u∈L∞(R+×Rd),can be disintegrated into a family of ODEs along ℘a with measure r.h.s. The decomposition ℘a is essentially unique. We finally show that b∈Lt1(BVx)loc satisfies this local structural assumption and this yields, in particular, the renormalization property for nearly incompressible BV vector fields.
2020
1
Bianchini, Stefano; Bonicatto, Paolo
A uniqueness result for the decomposition of vector fields in Rd / Bianchini, Stefano; Bonicatto, Paolo. - In: INVENTIONES MATHEMATICAE. - ISSN 0020-9910. - 220:1(2020), pp. 255-393. [10.1007/s00222-019-00928-8]
File in questo prodotto:
File Dimensione Formato  
BB_Inventiones2020.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 24
social impact