In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson equation as p→ + ∞ in Carnot-Carathéodory spaces. In particular, introducing a suitable notion of differentiability, extend the celebrated result of Bhattacharya et al. (Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the ∞ -Laplacian and the Eikonal equation.

The asymptotic p-Poisson equation as p→ ∞ in Carnot-Carathéodory spaces / Capogna, L.; Giovannardi, G.; Pinamonti, A.; Verzellesi, S.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 390:2(2024), pp. 2113-2153. [10.1007/s00208-024-02805-z]

The asymptotic p-Poisson equation as p→ ∞ in Carnot-Carathéodory spaces

Giovannardi G.;Pinamonti A.
;
Verzellesi S.
2024-01-01

Abstract

In this paper we study the asymptotic behavior of solutions to the subelliptic p-Poisson equation as p→ + ∞ in Carnot-Carathéodory spaces. In particular, introducing a suitable notion of differentiability, extend the celebrated result of Bhattacharya et al. (Rend Sem Mat Univ Politec Torino Fascicolo Speciale 47:15–68, 1989) and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the ∞ -Laplacian and the Eikonal equation.
2024
2
Capogna, L.; Giovannardi, G.; Pinamonti, A.; Verzellesi, S.
The asymptotic p-Poisson equation as p→ ∞ in Carnot-Carathéodory spaces / Capogna, L.; Giovannardi, G.; Pinamonti, A.; Verzellesi, S.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 390:2(2024), pp. 2113-2153. [10.1007/s00208-024-02805-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/409792
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact