Background: Mild cognitive impairment in Parkinson's disease (PD-MCI) includes deficits in different cognitive domains, and one domain to explore for neurocognitive impairment following the DSM-V is social cognition. However, this domain is not included in current criteria for PD-MCI diagnosis. Moreover, tests vary across studies. It is, therefore, crucial to optimize cognitive assessment in PD-MCI. We aimed to do so by using Machine Learning. Methods: 275 PD patients were included. Four cognitive batteries were created: two Standard ones (Levels I and II), applying current criteria and "traditional" tests; two Alternative ones (Levels I and II), which incorporated a test of social cognition. These batteries were included in the Random Forest (RF) classifier. To assess RF performance, the AUC was considered, and the Variable Importance Index was estimated to understand the contribution of each test in PD-MCI classification. Results: Standard Level I and II showed an AUC of 0.852 and 0.892, while Alternative Level I and II showed an AUC of 0.898 and of 0.906. Variable Importance Index revealed that TMT B-A, Ekman test, RAVLT-IR, MoCA, and Action Naming were tests that most contributed to PD-MCI classification. Conclusion: The Alternative level I assessment demonstrated a similar classification capacity to the Standard level II assessment. This finding suggests that in the cognitive assessment of PD patients, it is crucial to consider the most affected cognitive domains in this clinical population, including social cognition. Taken together, these results suggest to revise current criteria for the diagnosis of PD-MCI.

Are the criteria for PD-MCI diagnosis comprehensive? A Machine Learning study with modified criteria / Longo, Chiara; Romano, Daniele Luigi; Pennacchio, Maria; Malaguti, Maria Chiara; Di Giacopo, Raffaella; Giometto, Bruno; Papagno, Costanza. - In: PARKINSONISM & RELATED DISORDERS. - ISSN 1353-8020. - 124:(2024). [10.1016/j.parkreldis.2024.106987]

Are the criteria for PD-MCI diagnosis comprehensive? A Machine Learning study with modified criteria

Longo, Chiara
Co-primo
;
Pennacchio, Maria;Giometto, Bruno;Papagno, Costanza
Ultimo
2024-01-01

Abstract

Background: Mild cognitive impairment in Parkinson's disease (PD-MCI) includes deficits in different cognitive domains, and one domain to explore for neurocognitive impairment following the DSM-V is social cognition. However, this domain is not included in current criteria for PD-MCI diagnosis. Moreover, tests vary across studies. It is, therefore, crucial to optimize cognitive assessment in PD-MCI. We aimed to do so by using Machine Learning. Methods: 275 PD patients were included. Four cognitive batteries were created: two Standard ones (Levels I and II), applying current criteria and "traditional" tests; two Alternative ones (Levels I and II), which incorporated a test of social cognition. These batteries were included in the Random Forest (RF) classifier. To assess RF performance, the AUC was considered, and the Variable Importance Index was estimated to understand the contribution of each test in PD-MCI classification. Results: Standard Level I and II showed an AUC of 0.852 and 0.892, while Alternative Level I and II showed an AUC of 0.898 and of 0.906. Variable Importance Index revealed that TMT B-A, Ekman test, RAVLT-IR, MoCA, and Action Naming were tests that most contributed to PD-MCI classification. Conclusion: The Alternative level I assessment demonstrated a similar classification capacity to the Standard level II assessment. This finding suggests that in the cognitive assessment of PD patients, it is crucial to consider the most affected cognitive domains in this clinical population, including social cognition. Taken together, these results suggest to revise current criteria for the diagnosis of PD-MCI.
2024
Longo, Chiara; Romano, Daniele Luigi; Pennacchio, Maria; Malaguti, Maria Chiara; Di Giacopo, Raffaella; Giometto, Bruno; Papagno, Costanza
Are the criteria for PD-MCI diagnosis comprehensive? A Machine Learning study with modified criteria / Longo, Chiara; Romano, Daniele Luigi; Pennacchio, Maria; Malaguti, Maria Chiara; Di Giacopo, Raffaella; Giometto, Bruno; Papagno, Costanza. - In: PARKINSONISM & RELATED DISORDERS. - ISSN 1353-8020. - 124:(2024). [10.1016/j.parkreldis.2024.106987]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/408750
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact