Landscape heterogeneity, as measured by the spectral diversity of satellite imagery, has the potential to provide information on the resources available within the movement capacity range of arthropod vectors, and to help predict vector abundance. The Spectral Variation Hypothesis states that higher spectral diversity is positively related to a higher number of ecological niches present in the landscape, allowing more species to coexist regardless of the taxonomic group considered. Investigating the landscape heterogeneity as a proxy of the resources available to vectors may be relevant for complex and continuous agro-forest mosaics of small farmlands and degraded forests, where land cover classification is often imprecise. In this study, we hypothesized that larger spectral diversity would be associated with higher tick abundance due to the potentially higher number of hosts in heterogeneous landscapes. Specifically, we tested whether spectral diversity indices could represent heterogeneous landscapes, and if so, whether they explain Amblyomma and Hyalomma tick abundance in Benin and inform on their habitat preferences. Benin is a West-African country characterized by a mosaic landscape of farmland and degraded forests. Our results showed that both NDVI-derived and spectral predictors are highly collinear, with NDVI-derived predictors related to vegetated land cover classes and spectral predictors correlated to mosaic landscapes. Amblyomma abundance was not related to the predictors considered. Hyalomma abundance showed positive relationships to spectral diversity indices and negative relationships to NDVI-derived-ones. Though taxa dependent, our approach showed moderate performance in terms of goodness of fit (ca. 13–20% R2), which is a promising result considering the sampling and scale limitations. Spectral diversity indices coupled with classical SRS vegetation indices could be a complementary approach for providing further ecological aspects in the field of disease biogeography.
Looking for ticks from space: Using remotely sensed spectral diversity to assess amblyomma and Hyalomma tick abundance / Da Re, D.; De Clercq, E. M.; Tordoni, E.; Madder, M.; Rousseau, R.; Vanwambeke, S. O.. - In: REMOTE SENSING. - ISSN 2072-4292. - 11:7(2019), pp. 77001-77017. [10.3390/rs11070770]
Looking for ticks from space: Using remotely sensed spectral diversity to assess amblyomma and Hyalomma tick abundance
Da Re, D.;
2019-01-01
Abstract
Landscape heterogeneity, as measured by the spectral diversity of satellite imagery, has the potential to provide information on the resources available within the movement capacity range of arthropod vectors, and to help predict vector abundance. The Spectral Variation Hypothesis states that higher spectral diversity is positively related to a higher number of ecological niches present in the landscape, allowing more species to coexist regardless of the taxonomic group considered. Investigating the landscape heterogeneity as a proxy of the resources available to vectors may be relevant for complex and continuous agro-forest mosaics of small farmlands and degraded forests, where land cover classification is often imprecise. In this study, we hypothesized that larger spectral diversity would be associated with higher tick abundance due to the potentially higher number of hosts in heterogeneous landscapes. Specifically, we tested whether spectral diversity indices could represent heterogeneous landscapes, and if so, whether they explain Amblyomma and Hyalomma tick abundance in Benin and inform on their habitat preferences. Benin is a West-African country characterized by a mosaic landscape of farmland and degraded forests. Our results showed that both NDVI-derived and spectral predictors are highly collinear, with NDVI-derived predictors related to vegetated land cover classes and spectral predictors correlated to mosaic landscapes. Amblyomma abundance was not related to the predictors considered. Hyalomma abundance showed positive relationships to spectral diversity indices and negative relationships to NDVI-derived-ones. Though taxa dependent, our approach showed moderate performance in terms of goodness of fit (ca. 13–20% R2), which is a promising result considering the sampling and scale limitations. Spectral diversity indices coupled with classical SRS vegetation indices could be a complementary approach for providing further ecological aspects in the field of disease biogeography.File | Dimensione | Formato | |
---|---|---|---|
remotesensing-11-00770.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione