This study investigated the self-healing properties of PA6/COC blends, in particular, the impact of three compatibilizers on the rheological, microstructural, and thermomechanical properties. Dynamic rheological analysis revealed that ethylene glycidyl methacrylate (E-GMA) played a crucial role in reducing interfacial tension and promoting PA6 chain entanglement with COC domains. Mechanical tests showed that poly(ethylene)-graft-maleic anhydride (PE-g-MAH) and polyolefin elastomer-graft-maleic anhydride (POE-g-MAH) compatibilizers enhanced elongation at break, while E-GMA had a milder effect. A thermal healing process at 140 °C for 1 h was carried out on specimens broken in fracture toughness tests, performed under quasi-static and impact conditions, and healing efficiency (HE) was evaluated as the ratio of critical stress intensity factors of healed and virgin samples. All the compatibilizers increased HE, especially E-GMA, achieving 28.5% and 68% in quasi-static and impact conditions, respectively. SEM images of specimens tested in quasi-static conditions showed that all the compatibilizers induced PA6 plasticization and crack corrugation, thus hindering COC flow in the crack zone. Conversely, under impact conditions, E-GMA led to the formation of brittle fractures with planar surfaces, promoting COC flow and thus higher HE values. This study demonstrated that compatibilizers, loading mode, and fracture surface morphologies strongly influenced self-healing performance.

Compatibilization of Polyamide 6/Cyclic Olefinic Copolymer Blends for the Development of Multifunctional Thermoplastic Composites with Self-Healing Capability / Perin, Davide; Dorigato, Andrea; Pegoretti, Alessandro. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 17:8(2024). [10.3390/ma17081880]

Compatibilization of Polyamide 6/Cyclic Olefinic Copolymer Blends for the Development of Multifunctional Thermoplastic Composites with Self-Healing Capability

Perin, Davide
Primo
;
Dorigato, Andrea
Secondo
;
Pegoretti, Alessandro
Ultimo
2024-01-01

Abstract

This study investigated the self-healing properties of PA6/COC blends, in particular, the impact of three compatibilizers on the rheological, microstructural, and thermomechanical properties. Dynamic rheological analysis revealed that ethylene glycidyl methacrylate (E-GMA) played a crucial role in reducing interfacial tension and promoting PA6 chain entanglement with COC domains. Mechanical tests showed that poly(ethylene)-graft-maleic anhydride (PE-g-MAH) and polyolefin elastomer-graft-maleic anhydride (POE-g-MAH) compatibilizers enhanced elongation at break, while E-GMA had a milder effect. A thermal healing process at 140 °C for 1 h was carried out on specimens broken in fracture toughness tests, performed under quasi-static and impact conditions, and healing efficiency (HE) was evaluated as the ratio of critical stress intensity factors of healed and virgin samples. All the compatibilizers increased HE, especially E-GMA, achieving 28.5% and 68% in quasi-static and impact conditions, respectively. SEM images of specimens tested in quasi-static conditions showed that all the compatibilizers induced PA6 plasticization and crack corrugation, thus hindering COC flow in the crack zone. Conversely, under impact conditions, E-GMA led to the formation of brittle fractures with planar surfaces, promoting COC flow and thus higher HE values. This study demonstrated that compatibilizers, loading mode, and fracture surface morphologies strongly influenced self-healing performance.
2024
8
Perin, Davide; Dorigato, Andrea; Pegoretti, Alessandro
Compatibilization of Polyamide 6/Cyclic Olefinic Copolymer Blends for the Development of Multifunctional Thermoplastic Composites with Self-Healing Capability / Perin, Davide; Dorigato, Andrea; Pegoretti, Alessandro. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 17:8(2024). [10.3390/ma17081880]
File in questo prodotto:
File Dimensione Formato  
330-Perin_Materials-2024.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/408094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact