The premise for AI systems like personal assistants to provide guidance and suggestions to an end-user is to understand, at any moment in time, the personal context that the user is in. The context – where the user is, what she is doing and with whom – allows the machine to represent the world in user’s terms. The context must be inferred from a stream of sensor readings generated by smart wearables such as smartphones and smartwatches, and the labels are acquired from the user directly. To perform robust context prediction in this real-world scenario, the machine must handle the egocentric nature of the context, adapt to the changing world and user, and maintain a bidirectional interaction with the user to ensure the user-machine alignment of world representations. To this end, the machine must learn incrementally on the input stream of sensor readings and user supervision. In this work, we: (i) introduce interactive classification in the wild and present knowledge drift (KD), a special form of concept drift, occurring due to world and user changes; (ii) develop simple and robust ML methods to tackle these scenarios; (iii) showcase the advantages of each of these methods in empirical evaluations on controlled synthetic and real-world data sets; (iv) design a flexible and modular architecture that combines the methods above to support context recognition in the wild; (v) present an evaluation with real users in a concrete social science use case.

Human-Machine Alignment for Context Recognition in the Wild / Bontempelli, Andrea. - (2024 Apr 30), pp. 1-139. [10.15168/11572_407669]

Human-Machine Alignment for Context Recognition in the Wild

Bontempelli, Andrea
2024-04-30

Abstract

The premise for AI systems like personal assistants to provide guidance and suggestions to an end-user is to understand, at any moment in time, the personal context that the user is in. The context – where the user is, what she is doing and with whom – allows the machine to represent the world in user’s terms. The context must be inferred from a stream of sensor readings generated by smart wearables such as smartphones and smartwatches, and the labels are acquired from the user directly. To perform robust context prediction in this real-world scenario, the machine must handle the egocentric nature of the context, adapt to the changing world and user, and maintain a bidirectional interaction with the user to ensure the user-machine alignment of world representations. To this end, the machine must learn incrementally on the input stream of sensor readings and user supervision. In this work, we: (i) introduce interactive classification in the wild and present knowledge drift (KD), a special form of concept drift, occurring due to world and user changes; (ii) develop simple and robust ML methods to tackle these scenarios; (iii) showcase the advantages of each of these methods in empirical evaluations on controlled synthetic and real-world data sets; (iv) design a flexible and modular architecture that combines the methods above to support context recognition in the wild; (v) present an evaluation with real users in a concrete social science use case.
30-apr-2024
XXXV
2023-2024
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Giunchiglia, Fausto
Passerini, Andrea
no
Inglese
File in questo prodotto:
File Dimensione Formato  
final_phd_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 7.22 MB
Formato Adobe PDF
7.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/407669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact