There are no effective treatment options for most patients with metastatic colorectal cancer (mCRC). mCRC remains a leading cause of tumor-related death, with a five-year survival rate of only 15%, highlighting the urgent need for novel pharmacological products. Current standard drugs are based on cytotoxic chemotherapy, VEGF inhibitors, EGFR antibodies, and multikinase inhibitors. The antibody-based delivery of pro-inflammatory cytokines provides a promising and differentiated strategy to improve the treatment outcome for mCRC patients. Here, we describe the generation of a novel fully human monoclonal antibody (termed F4) targeting the carcinoembryonic antigen (CEA), a tumor-associated antigen overexpressed in colorectal cancer and other malignancies. The F4 antibody was selected by antibody phage display technology after two rounds of affinity maturation. F4 in single-chain variable fragment format bound to CEA in surface plasmon resonance with an affinity of 7.7 nM. Flow cytometry and immunofluorescence on human cancer specimens confirmed binding to CEA-expressing cells. F4 selectively accumulated in CEA-positive tumors, as evidenced by two orthogonal in vivo biodistribution studies. Encouraged by these results, we genetically fused murine interleukin (IL) 12 to F4 in the single-chain diabody format. F4-IL12 exhibited potent antitumor activity in two murine models of colon cancer. Treatment with F4-IL12 led to an increased density of tumor-infiltrating lymphocytes and an upregulation of interferon γ expression by tumor-homing lymphocytes. These data suggest that the F4 antibody is an attractive delivery vehicle for targeted cancer therapy.

Generation and in vivo characterization of a novel high-affinity human antibody targeting carcinoembryonic antigen / Pluss, L.; Peissert, F.; Elsayed, A.; Rotta, G.; Romer, J.; Dakhel Plaza, S.; Villa, A.; Puca, E.; De Luca, R.; Oxenius, A.; Neri, D.. - In: MABS. - ISSN 1942-0862. - 15:1(2023). [10.1080/19420862.2023.2217964]

Generation and in vivo characterization of a novel high-affinity human antibody targeting carcinoembryonic antigen

Rotta G.;
2023-01-01

Abstract

There are no effective treatment options for most patients with metastatic colorectal cancer (mCRC). mCRC remains a leading cause of tumor-related death, with a five-year survival rate of only 15%, highlighting the urgent need for novel pharmacological products. Current standard drugs are based on cytotoxic chemotherapy, VEGF inhibitors, EGFR antibodies, and multikinase inhibitors. The antibody-based delivery of pro-inflammatory cytokines provides a promising and differentiated strategy to improve the treatment outcome for mCRC patients. Here, we describe the generation of a novel fully human monoclonal antibody (termed F4) targeting the carcinoembryonic antigen (CEA), a tumor-associated antigen overexpressed in colorectal cancer and other malignancies. The F4 antibody was selected by antibody phage display technology after two rounds of affinity maturation. F4 in single-chain variable fragment format bound to CEA in surface plasmon resonance with an affinity of 7.7 nM. Flow cytometry and immunofluorescence on human cancer specimens confirmed binding to CEA-expressing cells. F4 selectively accumulated in CEA-positive tumors, as evidenced by two orthogonal in vivo biodistribution studies. Encouraged by these results, we genetically fused murine interleukin (IL) 12 to F4 in the single-chain diabody format. F4-IL12 exhibited potent antitumor activity in two murine models of colon cancer. Treatment with F4-IL12 led to an increased density of tumor-infiltrating lymphocytes and an upregulation of interferon γ expression by tumor-homing lymphocytes. These data suggest that the F4 antibody is an attractive delivery vehicle for targeted cancer therapy.
2023
1
Pluss, L.; Peissert, F.; Elsayed, A.; Rotta, G.; Romer, J.; Dakhel Plaza, S.; Villa, A.; Puca, E.; De Luca, R.; Oxenius, A.; Neri, D.
Generation and in vivo characterization of a novel high-affinity human antibody targeting carcinoembryonic antigen / Pluss, L.; Peissert, F.; Elsayed, A.; Rotta, G.; Romer, J.; Dakhel Plaza, S.; Villa, A.; Puca, E.; De Luca, R.; Oxenius, A.; Neri, D.. - In: MABS. - ISSN 1942-0862. - 15:1(2023). [10.1080/19420862.2023.2217964]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/405749
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact