Quantum computing is one of the most promising technology advances of the latest years. Qubits are highly sensitive to noise, which can make the output useless. Lately, it has been shown that superconducting qubits are extremely susceptible to external sources of faults, such as ionizing radiation. When adopted in large scale, radiation-induced errors are expected to become a serious challenge for qubits reliability. We propose an evaluation of the impact of transient faults in the execution of quantum circuits on superconducting chips. Inspired by the Architectural and Program Vulnerability Factors, widely used for classical computation, we propose the Quantum Vulnerability Factor (QVF) to measure the impact of qubit corruption on the circuit output. We model faults, and design a fault injector, based on the latest studies on real machines and radiation experiments. We report the finding of more than 388,000,000 fault injections, considering single and double faults, on three algorithms, identifying the faults and qubits that are more likely to impact the output. We give guidelines on how to map the qubits in real devices to reduce the output error and to reduce the probability of having a radiation-induced corruption modifying the output. Finally, we compare simulations with experiments on physical quantum computers.

A Systematic Methodology to Compute the Quantum Vulnerability Factors for Quantum Circuits / Oliveira, Daniel; Giusto, Edoardo; Baheri, Betis; Guan, Qiang; Montrucchio, Bartolomeo; Rech, Paolo. - In: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. - ISSN 1545-5971. - 21:4(2024), pp. 2631-2644. [10.1109/tdsc.2023.3313934]

A Systematic Methodology to Compute the Quantum Vulnerability Factors for Quantum Circuits

Rech, Paolo
2024-01-01

Abstract

Quantum computing is one of the most promising technology advances of the latest years. Qubits are highly sensitive to noise, which can make the output useless. Lately, it has been shown that superconducting qubits are extremely susceptible to external sources of faults, such as ionizing radiation. When adopted in large scale, radiation-induced errors are expected to become a serious challenge for qubits reliability. We propose an evaluation of the impact of transient faults in the execution of quantum circuits on superconducting chips. Inspired by the Architectural and Program Vulnerability Factors, widely used for classical computation, we propose the Quantum Vulnerability Factor (QVF) to measure the impact of qubit corruption on the circuit output. We model faults, and design a fault injector, based on the latest studies on real machines and radiation experiments. We report the finding of more than 388,000,000 fault injections, considering single and double faults, on three algorithms, identifying the faults and qubits that are more likely to impact the output. We give guidelines on how to map the qubits in real devices to reduce the output error and to reduce the probability of having a radiation-induced corruption modifying the output. Finally, we compare simulations with experiments on physical quantum computers.
2024
4
Oliveira, Daniel; Giusto, Edoardo; Baheri, Betis; Guan, Qiang; Montrucchio, Bartolomeo; Rech, Paolo
A Systematic Methodology to Compute the Quantum Vulnerability Factors for Quantum Circuits / Oliveira, Daniel; Giusto, Edoardo; Baheri, Betis; Guan, Qiang; Montrucchio, Bartolomeo; Rech, Paolo. - In: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. - ISSN 1545-5971. - 21:4(2024), pp. 2631-2644. [10.1109/tdsc.2023.3313934]
File in questo prodotto:
File Dimensione Formato  
TDSC_A_Systematic_Methodology_to_Compute_the_Quantum_Vulnerability_Factors_for_Quantum_Circuits.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri
A_Systematic_Methodology_to_Compute_the_Quantum_Vulnerability_Factors_for_Quantum_Circuits.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/403929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact