Continued fractions in the field of p–adic numbers have been recently studied by several authors. It is known that the real continued fraction of a positive quadratic irrational is eventually periodic (Lagrange’s Theorem). It is still not known if a p–adic continued fraction algorithm exists that shares a similar property. In this paper we modify and improve one of Browkin’s algorithms. This algorithm is considered one of the best at the present time. Our new algorithm shows better properties of periodicity. We show for the square root of integers that if our algorithm produces a periodic expansion, then this periodic expansion will have pre-period one. It appears experimentally that our algorithm produces more periodic continued fractions for quadratic irrationals than Browkin’s algorithm. Hence, it is closer to an algorithm to which an analogue of Lagrange’s Theorem would apply.
A new algorithm for p-adic continued fractions / Murru, Nadir; Romeo, Giuliano. - In: MATHEMATICS OF COMPUTATION. - ISSN 1088-6842. - 93:347(2024), pp. 1309-1331. [10.1090/mcom/3890]
A new algorithm for p-adic continued fractions
Murru, Nadir;
2024-01-01
Abstract
Continued fractions in the field of p–adic numbers have been recently studied by several authors. It is known that the real continued fraction of a positive quadratic irrational is eventually periodic (Lagrange’s Theorem). It is still not known if a p–adic continued fraction algorithm exists that shares a similar property. In this paper we modify and improve one of Browkin’s algorithms. This algorithm is considered one of the best at the present time. Our new algorithm shows better properties of periodicity. We show for the square root of integers that if our algorithm produces a periodic expansion, then this periodic expansion will have pre-period one. It appears experimentally that our algorithm produces more periodic continued fractions for quadratic irrationals than Browkin’s algorithm. Hence, it is closer to an algorithm to which an analogue of Lagrange’s Theorem would apply.File | Dimensione | Formato | |
---|---|---|---|
Research_on_continued_fractions.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
481.81 kB
Formato
Adobe PDF
|
481.81 kB | Adobe PDF | Visualizza/Apri |
S0025-5718-2023-03890-X (1).pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
929.98 kB
Formato
Adobe PDF
|
929.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione