The current paper proposes a novel analytical micromechanics model to progressively predict the mechanical behavior of composites reinforced by continuous or discontinuous aligned fibers considering the nonlinear mechanical behavior of components and statistical breakage of fiber bundles based on the Curtin model. The PA6-based Single polymer composites (SPCs) are selected and extensive sets of experimental measurements on 12 available PA6 fibers with adequate repetitions to find reliable statistical Weibull parameters are performed. In addition, 10 different PA6 matrix samples, polymerized with various dosages of additives and raw materials, are tested. A remarkable potential for enhancing both strength and toughness of neat PA6 matrix is demonstrated. Results reveal that using tough matrices with elongation in the order of PA6 fibers significantly enhances both strength and toughness of the SPC. The developed progressive micromechanics model provides an analytical parametric framework and a design guideline for developing new recyclable SPCs.
A Progressive Micromechanical Model for Single-Polymer Composites and Experimental Validation on Self-Reinforced PA6-Based Composites / Jalali, S. K.; Greco, G.; Rigotti, D.; Dorigato, A.; Mirbaha, H.; Fredi, G.; Bertolla, M.; Guerra, S.; Battistini, T.; Moro, A. Dal; Pegoretti, A.; Pugno, N. M.. - In: COMPOSITES. PART A: APPLIED SCIENCE AND MANUFACTURING. - ISSN 1359-835X. - 2024, 180:(2024), pp. 1-22. [10.1016/j.compositesa.2024.108042]
A Progressive Micromechanical Model for Single-Polymer Composites and Experimental Validation on Self-Reinforced PA6-Based Composites
Greco, G.;Dorigato, A.;Pegoretti, A.;Pugno, N. M.
Ultimo
2024-01-01
Abstract
The current paper proposes a novel analytical micromechanics model to progressively predict the mechanical behavior of composites reinforced by continuous or discontinuous aligned fibers considering the nonlinear mechanical behavior of components and statistical breakage of fiber bundles based on the Curtin model. The PA6-based Single polymer composites (SPCs) are selected and extensive sets of experimental measurements on 12 available PA6 fibers with adequate repetitions to find reliable statistical Weibull parameters are performed. In addition, 10 different PA6 matrix samples, polymerized with various dosages of additives and raw materials, are tested. A remarkable potential for enhancing both strength and toughness of neat PA6 matrix is demonstrated. Results reveal that using tough matrices with elongation in the order of PA6 fibers significantly enhances both strength and toughness of the SPC. The developed progressive micromechanics model provides an analytical parametric framework and a design guideline for developing new recyclable SPCs.File | Dimensione | Formato | |
---|---|---|---|
621-COMPOSITEA-A_progressive_micromechanical_model.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione