The hydrological cycle is strongly influenced by the accumulation and melting of seasonal snow. For this reason, mountains are often claimed to be the "water towers" of the world. In this context, a key variable is the snow water equivalent (SWE). However, the complex processes of snow accumulation, redistribution, and ablation make its quantification and prediction very challenging. In this work, we explore the use of multi-source data to reconstruct SWE at a high spatial resolution (HR) of 25 m. To this purpose, we propose a novel approach based on (i) in situ snow depth or SWE observations, temperature data and synthetic aperture radar (SAR) images to determine the pixel state, i.e., whether it is undergoing an SWE increase (accumulation) or decrease (ablation), (ii) a daily HR time series of snow cover area (SCA) maps derived by high- and low-resolution multispectral optical satellite images to define the days of snow presence, and (iii) a degree-day model driven by in situ temperature to determine the potential melting. Given the typical high spatial heterogeneity of snow in mountainous areas, the use of HR images represents an important novelty that allows us to sample its distribution more adequately, thus resulting in highly detailed spatialized information. The proposed SWE reconstruction approach also foresees a novel SCA time series regularization technique that models impossible transitions based on the pixel state, i.e., the erroneous change in the pixel class from snow to snow-free when it is expected to be in accumulation or equilibrium and, vice versa, from snow-free to snow when it is expected to be in ablation or equilibrium. Furthermore, it reconstructs the SWE for the entire hydrological season, including late snowfall. The approach does not require spatialized precipitation information as input, which is usually affected by uncertainty. The method provided good results in two different test catchments: the South Fork of the San Joaquin River, California, and the Schnals catchment, Italy. It obtained good agreement when evaluated against HR spatialized reference maps (showing an average bias of -22 mm, a root mean square error - RMSE - of 212 mm, and a correlation of 0.74), against a daily dataset at coarser resolution (showing an average bias of -44 mm, an RMSE of 127 mm, and a correlation of 0.66), and against manual measurements (showing an average bias of -5 mm, an RMSE of 191 mm, and a correlation of 0.35). The main sources of error are discussed to provide insights into the main advantages and disadvantages of the method that may be of interest for several hydrological and ecological applications.

Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments / Premier, Valentina; Marin, Carlo; Bertoldi, Giacomo; Barella, Riccardo; Notarnicola, Claudia; Bruzzone, Lorenzo. - In: THE CRYOSPHERE. - ISSN 1994-0424. - 17:6(2023), pp. 2387-2407. [10.5194/tc-17-2387-2023]

Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments

Premier, Valentina;Marin, Carlo;Bruzzone, Lorenzo
2023-01-01

Abstract

The hydrological cycle is strongly influenced by the accumulation and melting of seasonal snow. For this reason, mountains are often claimed to be the "water towers" of the world. In this context, a key variable is the snow water equivalent (SWE). However, the complex processes of snow accumulation, redistribution, and ablation make its quantification and prediction very challenging. In this work, we explore the use of multi-source data to reconstruct SWE at a high spatial resolution (HR) of 25 m. To this purpose, we propose a novel approach based on (i) in situ snow depth or SWE observations, temperature data and synthetic aperture radar (SAR) images to determine the pixel state, i.e., whether it is undergoing an SWE increase (accumulation) or decrease (ablation), (ii) a daily HR time series of snow cover area (SCA) maps derived by high- and low-resolution multispectral optical satellite images to define the days of snow presence, and (iii) a degree-day model driven by in situ temperature to determine the potential melting. Given the typical high spatial heterogeneity of snow in mountainous areas, the use of HR images represents an important novelty that allows us to sample its distribution more adequately, thus resulting in highly detailed spatialized information. The proposed SWE reconstruction approach also foresees a novel SCA time series regularization technique that models impossible transitions based on the pixel state, i.e., the erroneous change in the pixel class from snow to snow-free when it is expected to be in accumulation or equilibrium and, vice versa, from snow-free to snow when it is expected to be in ablation or equilibrium. Furthermore, it reconstructs the SWE for the entire hydrological season, including late snowfall. The approach does not require spatialized precipitation information as input, which is usually affected by uncertainty. The method provided good results in two different test catchments: the South Fork of the San Joaquin River, California, and the Schnals catchment, Italy. It obtained good agreement when evaluated against HR spatialized reference maps (showing an average bias of -22 mm, a root mean square error - RMSE - of 212 mm, and a correlation of 0.74), against a daily dataset at coarser resolution (showing an average bias of -44 mm, an RMSE of 127 mm, and a correlation of 0.66), and against manual measurements (showing an average bias of -5 mm, an RMSE of 191 mm, and a correlation of 0.35). The main sources of error are discussed to provide insights into the main advantages and disadvantages of the method that may be of interest for several hydrological and ecological applications.
2023
6
Premier, Valentina; Marin, Carlo; Bertoldi, Giacomo; Barella, Riccardo; Notarnicola, Claudia; Bruzzone, Lorenzo
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments / Premier, Valentina; Marin, Carlo; Bertoldi, Giacomo; Barella, Riccardo; Notarnicola, Claudia; Bruzzone, Lorenzo. - In: THE CRYOSPHERE. - ISSN 1994-0424. - 17:6(2023), pp. 2387-2407. [10.5194/tc-17-2387-2023]
File in questo prodotto:
File Dimensione Formato  
tc-17-2387-2023.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/401510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact