The development of highly predictive analysis for designing cementitious composite with improved thermal and hygroscopic performance for building and construction poses a significant challenge. To investigate new potential applications, cement pastes have been prepared using a cement, sand, and crystallization admixture, with highly hygroscopic polymer additions (SA-PA) of sodium polyacrylate and/or recycled polyamide fibers. The porosity evolution was investigated at different curing stages and after heat treatment at 200 °C, the temperature at which the paste dehydrates quickly without structural changes. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), cyclic shear tests, thermal conductivity, and diffusivity measurements were carried out on the cement pastes to assess their microstructure. The behavior of the cement pastes varied with polymer additions and thermal treatments; ka−0.5 must be maximized in heat storage applications, where a and k are thermal diffusivity and conductivity, respectively. In contrast, the product a0.5k−1 must be maximized in energy-efficient insulation. Cement pastes with SA-PA exhibited the highest values of both 9.191 102 m−2 K−1 s0.5 W and 1.088 10−3 m2 K s−0.5 W−1, respectively. After the thermal treatment at 200 °C, SA-PA samples maintained the highest heat-storing performance of 6.258 102 m−2 K−1 s0.5 W, while the samples with SA-PA and polyamide fibers performed better in energy-efficient insulation, demonstrating performance of 2.552 10−3 m2 K s−0.5 W−1. These results, discussed in terms of pore size distribution, suggest potential applications in the building field and are valuable for designing plaster and concrete for applications such as thermal and hygroscopic control.

Cement Pastes with Hygroscopic Polymeric Additions for Potential Building Applications / Di Maggio, Rosa; Maracchini, Gianluca; Cotini, Oscar; Albatici, Rossano. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 2024, 14:2(2024), pp. 1-14. [10.3390/app14020853]

Cement Pastes with Hygroscopic Polymeric Additions for Potential Building Applications

Di Maggio, Rosa
Primo
;
Maracchini, Gianluca
Secondo
;
Cotini, Oscar
Penultimo
;
Albatici, Rossano
Ultimo
2024-01-01

Abstract

The development of highly predictive analysis for designing cementitious composite with improved thermal and hygroscopic performance for building and construction poses a significant challenge. To investigate new potential applications, cement pastes have been prepared using a cement, sand, and crystallization admixture, with highly hygroscopic polymer additions (SA-PA) of sodium polyacrylate and/or recycled polyamide fibers. The porosity evolution was investigated at different curing stages and after heat treatment at 200 °C, the temperature at which the paste dehydrates quickly without structural changes. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), cyclic shear tests, thermal conductivity, and diffusivity measurements were carried out on the cement pastes to assess their microstructure. The behavior of the cement pastes varied with polymer additions and thermal treatments; ka−0.5 must be maximized in heat storage applications, where a and k are thermal diffusivity and conductivity, respectively. In contrast, the product a0.5k−1 must be maximized in energy-efficient insulation. Cement pastes with SA-PA exhibited the highest values of both 9.191 102 m−2 K−1 s0.5 W and 1.088 10−3 m2 K s−0.5 W−1, respectively. After the thermal treatment at 200 °C, SA-PA samples maintained the highest heat-storing performance of 6.258 102 m−2 K−1 s0.5 W, while the samples with SA-PA and polyamide fibers performed better in energy-efficient insulation, demonstrating performance of 2.552 10−3 m2 K s−0.5 W−1. These results, discussed in terms of pore size distribution, suggest potential applications in the building field and are valuable for designing plaster and concrete for applications such as thermal and hygroscopic control.
2024
2
Di Maggio, Rosa; Maracchini, Gianluca; Cotini, Oscar; Albatici, Rossano
Cement Pastes with Hygroscopic Polymeric Additions for Potential Building Applications / Di Maggio, Rosa; Maracchini, Gianluca; Cotini, Oscar; Albatici, Rossano. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 2024, 14:2(2024), pp. 1-14. [10.3390/app14020853]
File in questo prodotto:
File Dimensione Formato  
applsci-14-00853-v2a.pdf

accesso aperto

Descrizione: paper pubblicato
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/400990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact