We show that the quantum approximate optimization algorithm (QAOA) can construct, with polynomially scaling resources, the ground state of the fully connected p-spin Ising ferromagnet, a problem that notoriously poses severe difficulties to a vanilla quantum annealing (QA) approach due to the exponentially small gaps encountered at first-order phase transition for p >= 3. For a target ground state at arbitrary transverse field, we find that an appropriate QAOA parameter initialization is necessary to achieve good performance of the algorithm when the number of variational parameters 2P is much smaller than the system size N because of the large number of suboptimal local minima Instead, when P exceeds a critical value P-N* proportional to N, the structure of the parameter space simplifies, as all minima become degenerate. This allows achieving the ground state with perfect fidelity with a number of parameters scaling extensively with N and with resources scaling polynomially with N.

Polynomial scaling of the quantum approximate optimization algorithm for ground-state preparation of the fully connected p -spin ferromagnet in a transverse field / Wauters, Matteo M.; Mbeng, Glen B.; Santoro, Giuseppe E.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:6(2020). [10.1103/PhysRevA.102.062404]

Polynomial scaling of the quantum approximate optimization algorithm for ground-state preparation of the fully connected p -spin ferromagnet in a transverse field

Matteo M. Wauters
Primo
;
2020-01-01

Abstract

We show that the quantum approximate optimization algorithm (QAOA) can construct, with polynomially scaling resources, the ground state of the fully connected p-spin Ising ferromagnet, a problem that notoriously poses severe difficulties to a vanilla quantum annealing (QA) approach due to the exponentially small gaps encountered at first-order phase transition for p >= 3. For a target ground state at arbitrary transverse field, we find that an appropriate QAOA parameter initialization is necessary to achieve good performance of the algorithm when the number of variational parameters 2P is much smaller than the system size N because of the large number of suboptimal local minima Instead, when P exceeds a critical value P-N* proportional to N, the structure of the parameter space simplifies, as all minima become degenerate. This allows achieving the ground state with perfect fidelity with a number of parameters scaling extensively with N and with resources scaling polynomially with N.
2020
6
Wauters, Matteo M.; Mbeng, Glen B.; Santoro, Giuseppe E.
Polynomial scaling of the quantum approximate optimization algorithm for ground-state preparation of the fully connected p -spin ferromagnet in a transverse field / Wauters, Matteo M.; Mbeng, Glen B.; Santoro, Giuseppe E.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:6(2020). [10.1103/PhysRevA.102.062404]
File in questo prodotto:
File Dimensione Formato  
Wauters_PRA2020.pdf

accesso aperto

Descrizione: Published version
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 624.81 kB
Formato Adobe PDF
624.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/400491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact