Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.

Action of Botulinum Neurotoxin E Type in Experimental Epilepsies / Antonucci, Flavia; Bozzi, Yuri. - In: TOXINS. - ISSN 2072-6651. - 15:9(2023), pp. 55001-55012. [10.3390/toxins15090550]

Action of Botulinum Neurotoxin E Type in Experimental Epilepsies

Bozzi, Yuri
Ultimo
2023-01-01

Abstract

Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.
2023
9
Antonucci, Flavia; Bozzi, Yuri
Action of Botulinum Neurotoxin E Type in Experimental Epilepsies / Antonucci, Flavia; Bozzi, Yuri. - In: TOXINS. - ISSN 2072-6651. - 15:9(2023), pp. 55001-55012. [10.3390/toxins15090550]
File in questo prodotto:
File Dimensione Formato  
Antonucci_Toxins_2023.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/400178
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact