Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an R-algebra, given any commutative ring R with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these R-algebras are isomorphic, considering also the R-algebras obtained using the Hadamard product and the convolution product.

Some notes on the algebraic structure of linear recurrent sequences / Alecci, Gessica; Barbero, Stefano; Murru, Nadir. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - 2023:(2023). [10.1007/s11587-023-00826-5]

Some notes on the algebraic structure of linear recurrent sequences

Barbero, Stefano;Murru, Nadir
2023-01-01

Abstract

Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an R-algebra, given any commutative ring R with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these R-algebras are isomorphic, considering also the R-algebras obtained using the Hadamard product and the convolution product.
2023
Alecci, Gessica; Barbero, Stefano; Murru, Nadir
Some notes on the algebraic structure of linear recurrent sequences / Alecci, Gessica; Barbero, Stefano; Murru, Nadir. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - 2023:(2023). [10.1007/s11587-023-00826-5]
File in questo prodotto:
File Dimensione Formato  
(2023) Some notes on the algebraic structure of linear recurrent sequences.pdf

Solo gestori archivio

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 324.64 kB
Formato Adobe PDF
324.64 kB Adobe PDF   Visualizza/Apri
s11587-023-00826-5.pdf

accesso aperto

Descrizione: online first
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 273.8 kB
Formato Adobe PDF
273.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/400104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact