We tested previous post-hoc findings indicating a relationship between functional connectivity (FC) in the motor network and corticospinal excitability (CsE), in a real-time EEG-TMS experiment in healthy participants. We hypothesized that high FC between left and right motor cortex predicts high CsE. FC was quantified in real-time by single-trial phase-locking value (stPLV), and TMS single pulses were delivered based on the current FC. CsE was indexed by motor-evoked potential (MEP) amplitude in a hand muscle. Possible confounding factors (pre-stimulus μ-power and phase, interstimulus interval) were evaluated post hoc. MEPs were significantly larger during high FC compared to low FC. Post hoc analysis revealed that the FC condition showed a significant interaction with μ-power in the stimulated hemisphere. Further, inter-stimulus interval (ISI) interacted with high vs. low FC conditions. In summary, FC was confirmed to be predictive of CsE, but should not be considered in isolation fro...

We tested previous post-hoc findings indicating a relationship between functional connectivity (FC) in the motor network and corticospinal excitability (CsE), in a real-time EEG-TMS experiment in healthy participants. We hypothesized that high FC between left and right motor cortex predicts high CsE. FC was quantified in real-time by single-trial phase-locking value (stPLV), and TMS single pulses were delivered based on the current FC. CsE was indexed by motor-evoked potential (MEP) amplitude in a hand muscle. Possible confounding factors (pre-stimulus μ-power and phase, interstimulus interval) were evaluated post hoc. MEPs were significantly larger during high FC compared to low FC. Post hoc analysis revealed that the FC condition showed a significant interaction with μ-power in the stimulated hemisphere. Further, inter-stimulus interval (ISI) interacted with high vs. low FC conditions. In summary, FC was confirmed to be predictive of CsE, but should not be considered in isolation from μ-power and ISI. Moreover, FC was complementary to μ-phase in predicting CsE. Motor network FC is another marker of real-time accessible CsE beyond previously established markers, in particular phase and power of the μ rhythm, and may help define a more robust composite biomarker of high/low excitability states of human motor cortex.

Targeting motor cortex high-excitability states defined by functional connectivity with real-time EEG-TMS / Vetter, David Emanuel; Zrenner, Christoph; Belardinelli, Paolo; Mutanen, Tuomas Petteri; Kozák, Gábor; Marzetti, Laura; Ziemann, Ulf. - In: NEUROIMAGE. - ISSN 1095-9572. - 284:(2023), pp. 12042701-12042716. [10.1016/j.neuroimage.2023.120427]

Targeting motor cortex high-excitability states defined by functional connectivity with real-time EEG-TMS

Belardinelli, Paolo;Marzetti, Laura;
2023-01-01

Abstract

We tested previous post-hoc findings indicating a relationship between functional connectivity (FC) in the motor network and corticospinal excitability (CsE), in a real-time EEG-TMS experiment in healthy participants. We hypothesized that high FC between left and right motor cortex predicts high CsE. FC was quantified in real-time by single-trial phase-locking value (stPLV), and TMS single pulses were delivered based on the current FC. CsE was indexed by motor-evoked potential (MEP) amplitude in a hand muscle. Possible confounding factors (pre-stimulus μ-power and phase, interstimulus interval) were evaluated post hoc. MEPs were significantly larger during high FC compared to low FC. Post hoc analysis revealed that the FC condition showed a significant interaction with μ-power in the stimulated hemisphere. Further, inter-stimulus interval (ISI) interacted with high vs. low FC conditions. In summary, FC was confirmed to be predictive of CsE, but should not be considered in isolation fro...
2023
Vetter, David Emanuel; Zrenner, Christoph; Belardinelli, Paolo; Mutanen, Tuomas Petteri; Kozák, Gábor; Marzetti, Laura; Ziemann, Ulf...espandi
Targeting motor cortex high-excitability states defined by functional connectivity with real-time EEG-TMS / Vetter, David Emanuel; Zrenner, Christoph; Belardinelli, Paolo; Mutanen, Tuomas Petteri; Kozák, Gábor; Marzetti, Laura; Ziemann, Ulf. - In: NEUROIMAGE. - ISSN 1095-9572. - 284:(2023), pp. 12042701-12042716. [10.1016/j.neuroimage.2023.120427]
File in questo prodotto:
File Dimensione Formato  
Vetter_NI_2023.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/399792
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact