The computation of dimensions of secant varieties of projective varieties is classically approached via dimensions of linear systems with multiple base points in general position. Non-defectivity can be proved via degenerations. In this paper, we use a technique that allows some of the base points to collapse together in order to deduce a new general criterion for non-defectivity. We apply this criterion to prove a conjecture by Abo and Brambilla: for c≥3 and d≥3, the Segre-Veronese embedding of Pm×Pn in bidegree (c,d) is non-defective.

Secant non-defectivity via collisions of fat points / Galuppi, F.; Oneto, A.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 409:(2022), pp. 10865701-10865758. [10.1016/j.aim.2022.108657]

Secant non-defectivity via collisions of fat points

Oneto, A.
2022-01-01

Abstract

The computation of dimensions of secant varieties of projective varieties is classically approached via dimensions of linear systems with multiple base points in general position. Non-defectivity can be proved via degenerations. In this paper, we use a technique that allows some of the base points to collapse together in order to deduce a new general criterion for non-defectivity. We apply this criterion to prove a conjecture by Abo and Brambilla: for c≥3 and d≥3, the Segre-Veronese embedding of Pm×Pn in bidegree (c,d) is non-defective.
2022
Galuppi, F.; Oneto, A.
Secant non-defectivity via collisions of fat points / Galuppi, F.; Oneto, A.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 409:(2022), pp. 10865701-10865758. [10.1016/j.aim.2022.108657]
File in questo prodotto:
File Dimensione Formato  
2104.02522.pdf

Open Access dal 23/09/2024

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 836.81 kB
Formato Adobe PDF
836.81 kB Adobe PDF Visualizza/Apri
1-s2.0-S0001870822004741-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/399589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact