In this paper, we study linear spaces of matrices defined over discretely valued fields and discuss their dimension and minimal rank drops over the associated residue fields. To this end, we take first steps into the theory of rank-metric codes over discrete valuation rings by means of skew algebras derived from Galois extensions of rings. Additionally, we model projectivizations of rank-metric codes via Mustafin varieties, which we then employ to give sufficient conditions for a decrease in the dimension.

Valued rank-metric codes / Maazouz, Y. E.; Hahn, M. A.; Neri, A.; Stanojkovski, M.. - In: JOURNAL OF ALGEBRA AND ITS APPLICATIONS. - ISSN 0219-4988. - 2025:(2023), pp. 255011601-255011639. [10.1142/S0219498825501166]

Valued rank-metric codes

Stanojkovski M.
2023-01-01

Abstract

In this paper, we study linear spaces of matrices defined over discretely valued fields and discuss their dimension and minimal rank drops over the associated residue fields. To this end, we take first steps into the theory of rank-metric codes over discrete valuation rings by means of skew algebras derived from Galois extensions of rings. Additionally, we model projectivizations of rank-metric codes via Mustafin varieties, which we then employ to give sufficient conditions for a decrease in the dimension.
2023
Maazouz, Y. E.; Hahn, M. A.; Neri, A.; Stanojkovski, M.
Valued rank-metric codes / Maazouz, Y. E.; Hahn, M. A.; Neri, A.; Stanojkovski, M.. - In: JOURNAL OF ALGEBRA AND ITS APPLICATIONS. - ISSN 0219-4988. - 2025:(2023), pp. 255011601-255011639. [10.1142/S0219498825501166]
File in questo prodotto:
File Dimensione Formato  
lssm-final.pdf

Open Access dal 25/11/2024

Descrizione: versione mandata a periodico
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 457.18 kB
Formato Adobe PDF
457.18 kB Adobe PDF Visualizza/Apri
el-maazouz-et-al-2023-valued-rank-metric-codes (1).pdf

Solo gestori archivio

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 625.1 kB
Formato Adobe PDF
625.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/399531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact