In this paper, we study linear spaces of matrices defined over discretely valued fields and discuss their dimension and minimal rank drops over the associated residue fields. To this end, we take first steps into the theory of rank-metric codes over discrete valuation rings by means of skew algebras derived from Galois extensions of rings. Additionally, we model projectivizations of rank-metric codes via Mustafin varieties, which we then employ to give sufficient conditions for a decrease in the dimension.
Valued rank-metric codes / Maazouz, Y. E.; Hahn, M. A.; Neri, A.; Stanojkovski, M.. - In: JOURNAL OF ALGEBRA AND ITS APPLICATIONS. - ISSN 0219-4988. - 2025:(2023), pp. 255011601-255011639. [10.1142/S0219498825501166]
Valued rank-metric codes
Stanojkovski M.
2023-01-01
Abstract
In this paper, we study linear spaces of matrices defined over discretely valued fields and discuss their dimension and minimal rank drops over the associated residue fields. To this end, we take first steps into the theory of rank-metric codes over discrete valuation rings by means of skew algebras derived from Galois extensions of rings. Additionally, we model projectivizations of rank-metric codes via Mustafin varieties, which we then employ to give sufficient conditions for a decrease in the dimension.File | Dimensione | Formato | |
---|---|---|---|
lssm-final.pdf
Open Access dal 25/11/2024
Descrizione: versione mandata a periodico
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
457.18 kB
Formato
Adobe PDF
|
457.18 kB | Adobe PDF | Visualizza/Apri |
el-maazouz-et-al-2023-valued-rank-metric-codes (1).pdf
Solo gestori archivio
Descrizione: first online
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
625.1 kB
Formato
Adobe PDF
|
625.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione