Let X ⊂ P r be an integral and non-degenerate variety. For any q ∈ P rits X-rank rX(q) is the minimal cardinality of a finite subset of X whose linear span contains q. The solution set S(X, q) of q ∈ Pr is the set of all S ⊂ X such that #S = rX(q) and S spans q. We prove that if X 6= Pr there is at least one q with #S(X, q) > 1 and that for almost all pairs (X, q) we have dim S(X, q) > 0.

Embedded varieties, X-ranks and uniqueness or finiteness of the solutions / Ballico, Edoardo. - In: AFRIKA MATEMATIKA. - ISSN 1012-9405. - STAMPA. - 34:4(2023), pp. 921-925. [10.1007/s13370-023-01133-w]

Embedded varieties, X-ranks and uniqueness or finiteness of the solutions

Ballico, Edoardo
2023-01-01

Abstract

Let X ⊂ P r be an integral and non-degenerate variety. For any q ∈ P rits X-rank rX(q) is the minimal cardinality of a finite subset of X whose linear span contains q. The solution set S(X, q) of q ∈ Pr is the set of all S ⊂ X such that #S = rX(q) and S spans q. We prove that if X 6= Pr there is at least one q with #S(X, q) > 1 and that for almost all pairs (X, q) we have dim S(X, q) > 0.
2023
4
Ballico, Edoardo
Embedded varieties, X-ranks and uniqueness or finiteness of the solutions / Ballico, Edoardo. - In: AFRIKA MATEMATIKA. - ISSN 1012-9405. - STAMPA. - 34:4(2023), pp. 921-925. [10.1007/s13370-023-01133-w]
File in questo prodotto:
File Dimensione Formato  
r2solutions.pdf

Solo gestori archivio

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 255.94 kB
Formato Adobe PDF
255.94 kB Adobe PDF   Visualizza/Apri
s13370-023-01133-w.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 227.91 kB
Formato Adobe PDF
227.91 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/399193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact