Let X ⊂ P r be an integral and non-degenerate variety. For any q ∈ P rits X-rank rX(q) is the minimal cardinality of a finite subset of X whose linear span contains q. The solution set S(X, q) of q ∈ Pr is the set of all S ⊂ X such that #S = rX(q) and S spans q. We prove that if X 6= Pr there is at least one q with #S(X, q) > 1 and that for almost all pairs (X, q) we have dim S(X, q) > 0.
Embedded varieties, X-ranks and uniqueness or finiteness of the solutions / Ballico, Edoardo. - In: AFRIKA MATEMATIKA. - ISSN 1012-9405. - STAMPA. - 34:4(2023), pp. 921-925. [10.1007/s13370-023-01133-w]
Embedded varieties, X-ranks and uniqueness or finiteness of the solutions
Ballico, Edoardo
2023-01-01
Abstract
Let X ⊂ P r be an integral and non-degenerate variety. For any q ∈ P rits X-rank rX(q) is the minimal cardinality of a finite subset of X whose linear span contains q. The solution set S(X, q) of q ∈ Pr is the set of all S ⊂ X such that #S = rX(q) and S spans q. We prove that if X 6= Pr there is at least one q with #S(X, q) > 1 and that for almost all pairs (X, q) we have dim S(X, q) > 0.File | Dimensione | Formato | |
---|---|---|---|
r2solutions.pdf
Solo gestori archivio
Descrizione: first online
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
255.94 kB
Formato
Adobe PDF
|
255.94 kB | Adobe PDF | Visualizza/Apri |
s13370-023-01133-w.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
227.91 kB
Formato
Adobe PDF
|
227.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione