Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.
Genetic algorithms for hyperparameter optimization in predictive business process monitoring / Di Francescomarino, Chiara; Dumas, Marlon; Federici, Marco; Ghidini, Chiara; Maggi, Fabrizio Maria; Rizzi, Williams; Simonetto, Luca. - In: INFORMATION SYSTEMS. - ISSN 0306-4379. - 74:(2018), pp. 67-83. [10.1016/j.is.2018.01.003]
Genetic algorithms for hyperparameter optimization in predictive business process monitoring
Di Francescomarino, Chiara;Rizzi, Williams;
2018-01-01
Abstract
Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione