We study the multigraded Hilbert function of general rational curves of prescribed multidegree contained in a multiprojective space Y. We have strong negative results, e.g. for almost all line bundles L on Y there is a multidegree such that maximal rank with respect to L fails for all smooth rational curves C of that multidegree. This is different from the case of general rational curves in projective spaces. We also have positive results, most of them being for the two-factor case with one factor of dimension 1.

Rational curves and maximal rank in multiprojective spaces / Ballico, Edoardo. - In: BEITRAGE ZUR ALGEBRA UND GEOMETRIE. - ISSN 0138-4821. - STAMPA. - 64:(2023), pp. 909-919. [10.1007/s13366-022-00661-z]

Rational curves and maximal rank in multiprojective spaces

Ballico, Edoardo
Primo
2023-01-01

Abstract

We study the multigraded Hilbert function of general rational curves of prescribed multidegree contained in a multiprojective space Y. We have strong negative results, e.g. for almost all line bundles L on Y there is a multidegree such that maximal rank with respect to L fails for all smooth rational curves C of that multidegree. This is different from the case of general rational curves in projective spaces. We also have positive results, most of them being for the two-factor case with one factor of dimension 1.
2023
Ballico, Edoardo
Rational curves and maximal rank in multiprojective spaces / Ballico, Edoardo. - In: BEITRAGE ZUR ALGEBRA UND GEOMETRIE. - ISSN 0138-4821. - STAMPA. - 64:(2023), pp. 909-919. [10.1007/s13366-022-00661-z]
File in questo prodotto:
File Dimensione Formato  
r3ratiosegre.pdf

Solo gestori archivio

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 303.29 kB
Formato Adobe PDF
303.29 kB Adobe PDF   Visualizza/Apri
s13366-022-00661-z (1).pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 296.62 kB
Formato Adobe PDF
296.62 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/392609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact