In addition to the need for stable and precisely controllable qubits, quantum computers take advantage of good readout schemes. Superconducting qubit states can be inferred from the readout signal transmitted through a dispersively coupled resonator. This work proposes a readout classification method for superconducting qubits based on a neural network pretrained with an autoencoder approach. A neural network is pretrained with qubit readout signals as autoencoders in order to extract relevant features from the data set. Afterward, the pretrained-network inner-layer values are used to perform a classification of the inputs in a supervised manner. We demonstrate that this method can enhance classification performance, particularly for short- and long-time measurements where more traditional methods present inferior performance.

Enhancing Qubit Readout with Autoencoders / Luchi, Piero; Trevisanutto, Paolo E.; Roggero, Alessandro; Dubois, Jonathan L.; Rosen, Yaniv J.; Turro, Francesco; Amitrano, Valentina; Pederiva, Francesco. - In: PHYSICAL REVIEW APPLIED. - ISSN 2331-7019. - 20:1(2023), p. 014045. [10.1103/PhysRevApplied.20.014045]

Enhancing Qubit Readout with Autoencoders

Luchi, Piero;Trevisanutto, Paolo E.;Roggero, Alessandro;Turro, Francesco;Amitrano, Valentina;Pederiva, Francesco
2023-01-01

Abstract

In addition to the need for stable and precisely controllable qubits, quantum computers take advantage of good readout schemes. Superconducting qubit states can be inferred from the readout signal transmitted through a dispersively coupled resonator. This work proposes a readout classification method for superconducting qubits based on a neural network pretrained with an autoencoder approach. A neural network is pretrained with qubit readout signals as autoencoders in order to extract relevant features from the data set. Afterward, the pretrained-network inner-layer values are used to perform a classification of the inputs in a supervised manner. We demonstrate that this method can enhance classification performance, particularly for short- and long-time measurements where more traditional methods present inferior performance.
2023
1
Luchi, Piero; Trevisanutto, Paolo E.; Roggero, Alessandro; Dubois, Jonathan L.; Rosen, Yaniv J.; Turro, Francesco; Amitrano, Valentina; Pederiva, Fran...espandi
Enhancing Qubit Readout with Autoencoders / Luchi, Piero; Trevisanutto, Paolo E.; Roggero, Alessandro; Dubois, Jonathan L.; Rosen, Yaniv J.; Turro, Francesco; Amitrano, Valentina; Pederiva, Francesco. - In: PHYSICAL REVIEW APPLIED. - ISSN 2331-7019. - 20:1(2023), p. 014045. [10.1103/PhysRevApplied.20.014045]
File in questo prodotto:
File Dimensione Formato  
2212.00080.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 13.61 MB
Formato Adobe PDF
13.61 MB Adobe PDF Visualizza/Apri
2212.00080_compressed.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/387897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact