NiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(ii) beta-diketonate-diamine adducts of general formula [NiL(2)TMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = N,N,N ',N '-tetramethylethylenediamine]. Controlled variations in the diketonate structure are pursued to investigate the influence of steric hindrance and fluorination degree on the chemico-physical characteristics of the compounds. A multi-technique investigation supported by density functional calculations highlights that all complexes are air-insensitive and monomeric and that their thermal properties and fragmentation patterns are directly dependent on functional groups in the diketonate ligands. Preliminary thermal CVD experiments demonstrate the precursors' suitability for the obtainment of NiO films endowed with flat and homogeneous surfaces, paving the way to future implementation for CVD end-uses.
Interplay between coordination sphere engineering and properties of nickel diketonate-diamine complexes as vapor phase precursors for the growth of NiO thin films / Benedet, Mattia; Barreca, Davide; Fois, Ettore; Seraglia, Roberta; Tabacchi, Gloria; Roverso, Marco; Pagot, Gioele; Invernizzi, Cristiano; Gasparotto, Alberto; Heidecker, Alexandra A; Pöthig, Alexander; Callone, Emanuela; Dirè, Sandra; Bogialli, Sara; Di Noto, Vito; Maccato, Chiara. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - 52:31(2023), pp. 10677-10688. [10.1039/d3dt01282d]
Interplay between coordination sphere engineering and properties of nickel diketonate-diamine complexes as vapor phase precursors for the growth of NiO thin films
Callone, Emanuela;Dirè, Sandra;
2023-01-01
Abstract
NiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(ii) beta-diketonate-diamine adducts of general formula [NiL(2)TMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = N,N,N ',N '-tetramethylethylenediamine]. Controlled variations in the diketonate structure are pursued to investigate the influence of steric hindrance and fluorination degree on the chemico-physical characteristics of the compounds. A multi-technique investigation supported by density functional calculations highlights that all complexes are air-insensitive and monomeric and that their thermal properties and fragmentation patterns are directly dependent on functional groups in the diketonate ligands. Preliminary thermal CVD experiments demonstrate the precursors' suitability for the obtainment of NiO films endowed with flat and homogeneous surfaces, paving the way to future implementation for CVD end-uses.File | Dimensione | Formato | |
---|---|---|---|
Dalton_Ni_3DT01282D.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione