We give a generalization of subspace codes by means of codes of modules over finite commutative chain rings. We define a new class of Sperner codes and use results from extremal combinatorics to prove the optimality of such codes in different cases. Moreover, we explain the connection with Bruhat–Tits buildings and show how our codes are the buildings’ analogue of spherical codes in the Euclidean sense.

Submodule codes as spherical codes in buildings / Stanojkovski, M.. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - 91:7(2023), pp. 2449-2472. [10.1007/s10623-023-01207-7]

Submodule codes as spherical codes in buildings

Stanojkovski M.
2023-01-01

Abstract

We give a generalization of subspace codes by means of codes of modules over finite commutative chain rings. We define a new class of Sperner codes and use results from extremal combinatorics to prove the optimality of such codes in different cases. Moreover, we explain the connection with Bruhat–Tits buildings and show how our codes are the buildings’ analogue of spherical codes in the Euclidean sense.
2023
7
Stanojkovski, M.
Submodule codes as spherical codes in buildings / Stanojkovski, M.. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - 91:7(2023), pp. 2449-2472. [10.1007/s10623-023-01207-7]
File in questo prodotto:
File Dimensione Formato  
submodules-published.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 738.93 kB
Formato Adobe PDF
738.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/386349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact