The correlation dimension is a fundamental parameter in order to characterize fractal geometries. The estimation of the correlation dimension on a spherical manifold is of major interest in many applications, especially in climate science and geophysics. In this paper we investigate the use of the Takens estimator of the correlation dimension on a sphere. By relying on two analytically tractable cases, we show how using geodetic and Euclidean metrics ensues different kinds of bias. As a major application, our analysis provides a cue for investigations of fractal geometries in seismology.

Estimating the correlation dimension of a fractal on a sphere / Perinelli, Alessio; Iuppa, Roberto; Ricci, Leonardo. - In: CHAOS, SOLITONS AND FRACTALS. - ISSN 0960-0779. - ELETTRONICO. - 173:(2023), p. 113632. [10.1016/j.chaos.2023.113632]

Estimating the correlation dimension of a fractal on a sphere

Perinelli, Alessio
;
Iuppa, Roberto;Ricci, Leonardo
2023-01-01

Abstract

The correlation dimension is a fundamental parameter in order to characterize fractal geometries. The estimation of the correlation dimension on a spherical manifold is of major interest in many applications, especially in climate science and geophysics. In this paper we investigate the use of the Takens estimator of the correlation dimension on a sphere. By relying on two analytically tractable cases, we show how using geodetic and Euclidean metrics ensues different kinds of bias. As a major application, our analysis provides a cue for investigations of fractal geometries in seismology.
2023
Perinelli, Alessio; Iuppa, Roberto; Ricci, Leonardo
Estimating the correlation dimension of a fractal on a sphere / Perinelli, Alessio; Iuppa, Roberto; Ricci, Leonardo. - In: CHAOS, SOLITONS AND FRACTALS. - ISSN 0960-0779. - ELETTRONICO. - 173:(2023), p. 113632. [10.1016/j.chaos.2023.113632]
File in questo prodotto:
File Dimensione Formato  
ChaosSolitonsFractals_2023_173_113632_Perinelli_Iuppa_Ricci.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/380609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact