In this work we present a neural network model incorporating activity-dependent presynaptic facilitation with multidimensional inputs. The processing unit used is based on a slightly simplified version of the Learning Gate Model proposed by Ciaccia et al. (1992). The network topology integrates a well-known biological neural circuit with a lateral inhibition connection subnet. By means of simulation experiments, we show that the proposed networks exhibit basic and high-order features of associative learning. In particular, overshadowing and blocking are reproduced in the presence of both noise-free and noisy inputs. The role of noise in the development of high-order learning capabilities is also discussed.
High-order behaviour in learning gate networks with lateral inhibition.
Blanzieri, Enrico;
1996-01-01
Abstract
In this work we present a neural network model incorporating activity-dependent presynaptic facilitation with multidimensional inputs. The processing unit used is based on a slightly simplified version of the Learning Gate Model proposed by Ciaccia et al. (1992). The network topology integrates a well-known biological neural circuit with a lateral inhibition connection subnet. By means of simulation experiments, we show that the proposed networks exhibit basic and high-order features of associative learning. In particular, overshadowing and blocking are reproduced in the presence of both noise-free and noisy inputs. The role of noise in the development of high-order learning capabilities is also discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



