We consider a finite mixture model of multivariate Wrapped Normal distributions to handle non homogeneous circular data on a p-dimensional torus ((Formula presented.)). The Wrapped Normal distribution is a valid alternative to model multivariate circular or directional data on a p-torus. Parameter estimation is carried out through a nested (classification) EM algorithm, by exploiting the ideas of unwrapping circular data. The source of incompleteness in the outer E-step is represented by unobserved group memberships, whereas the source of incompleteness in the inner E-step is given by the unobserved vectors of wrapping coefficients. The finite sample behavior of the proposed method has been investigated by Monte Carlo numerical studies and real data examples. Supplemental materials for the article, including data and R codes for implementing methods, running simulations and replicate data analyses, are available online.

Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data / Greco, Luca; Novi Inverardi, Pier Luigi; Agostinelli, Claudio. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - 2023, 32:3(2023), pp. 1215-1228. [10.1080/10618600.2022.2128808]

Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data

Greco, Luca;Novi Inverardi, Pier Luigi;Agostinelli, Claudio
2023-01-01

Abstract

We consider a finite mixture model of multivariate Wrapped Normal distributions to handle non homogeneous circular data on a p-dimensional torus ((Formula presented.)). The Wrapped Normal distribution is a valid alternative to model multivariate circular or directional data on a p-torus. Parameter estimation is carried out through a nested (classification) EM algorithm, by exploiting the ideas of unwrapping circular data. The source of incompleteness in the outer E-step is represented by unobserved group memberships, whereas the source of incompleteness in the inner E-step is given by the unobserved vectors of wrapping coefficients. The finite sample behavior of the proposed method has been investigated by Monte Carlo numerical studies and real data examples. Supplemental materials for the article, including data and R codes for implementing methods, running simulations and replicate data analyses, are available online.
2023
3
Greco, Luca; Novi Inverardi, Pier Luigi; Agostinelli, Claudio
Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data / Greco, Luca; Novi Inverardi, Pier Luigi; Agostinelli, Claudio. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - 2023, 32:3(2023), pp. 1215-1228. [10.1080/10618600.2022.2128808]
File in questo prodotto:
File Dimensione Formato  
revised_paper_JCGS-21_133_R1.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri
Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.28 MB
Formato Adobe PDF
4.28 MB Adobe PDF   Visualizza/Apri
revised_paper_JCGS-21_133_R1.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex 3
social impact