We consider a finite mixture model of multivariate Wrapped Normal distributions to handle non homogeneous circular data on a p-dimensional torus ((Formula presented.)). The Wrapped Normal distribution is a valid alternative to model multivariate circular or directional data on a p-torus. Parameter estimation is carried out through a nested (classification) EM algorithm, by exploiting the ideas of unwrapping circular data. The source of incompleteness in the outer E-step is represented by unobserved group memberships, whereas the source of incompleteness in the inner E-step is given by the unobserved vectors of wrapping coefficients. The finite sample behavior of the proposed method has been investigated by Monte Carlo numerical studies and real data examples. Supplemental materials for the article, including data and R codes for implementing methods, running simulations and replicate data analyses, are available online.

Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data / Greco, L.; Novi Inverardi, P. L.; Agostinelli, C.. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - 2022:(2022), pp. 1-14. [10.1080/10618600.2022.2128808]

Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data

Greco L.;Novi Inverardi P. L.;Agostinelli C.
2022-01-01

Abstract

We consider a finite mixture model of multivariate Wrapped Normal distributions to handle non homogeneous circular data on a p-dimensional torus ((Formula presented.)). The Wrapped Normal distribution is a valid alternative to model multivariate circular or directional data on a p-torus. Parameter estimation is carried out through a nested (classification) EM algorithm, by exploiting the ideas of unwrapping circular data. The source of incompleteness in the outer E-step is represented by unobserved group memberships, whereas the source of incompleteness in the inner E-step is given by the unobserved vectors of wrapping coefficients. The finite sample behavior of the proposed method has been investigated by Monte Carlo numerical studies and real data examples. Supplemental materials for the article, including data and R codes for implementing methods, running simulations and replicate data analyses, are available online.
2022
Greco, L.; Novi Inverardi, P. L.; Agostinelli, C.
Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data / Greco, L.; Novi Inverardi, P. L.; Agostinelli, C.. - In: JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS. - ISSN 1061-8600. - 2022:(2022), pp. 1-14. [10.1080/10618600.2022.2128808]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/378264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact