Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO)6 deposition on SiO2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.
Multiscale Simulation of the Focused Electron Beam Induced Deposition Process / De Vera Gomis, Pablo; Azzolini, Martina; Sushko, Gennady; Abril, Isabel; Garcia-Molina, Rafael; Dapor, Maurizio; Solov'Yov, Ilia A; Solov'Yov, Andrey V. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 10:1(2020), p. 20827. [10.1038/s41598-020-77120-z]
Multiscale Simulation of the Focused Electron Beam Induced Deposition Process
Azzolini, Martina;Dapor, Maurizio;
2020-01-01
Abstract
Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO)6 deposition on SiO2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.File | Dimensione | Formato | |
---|---|---|---|
de Vera et al. - 2020 - Scientific Reports.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione