We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks: person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed bipartite graph reasoning (BGR) block aims to reason the long-range cross relations between the source and target pose in a bipartite graph, which mitigates some of the challenges caused by pose deformation. Moreover, we propose a new interaction-and-aggregation (IA) block to effectively update and enhance the feature representation capability of both a person’s shape and appearance in an interactive way. To further capture the change in pose of each part more precisely, we propose a novel part-aware bipartite graph reasoning (PBGR) block to decompose the task of reasoning the global structure transformation with a bipartite graph into learning different local transformations for different semantic body/face parts. Experiments on two challenging generation tasks with three public datasets demonstrate the effectiveness of the proposed methods in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.
Bipartite Graph Reasoning GANs for Person Pose and Facial Image Synthesis / Tang, H.; Shao, L.; Torr, P. H. S.; Sebe, N.. - In: INTERNATIONAL JOURNAL OF COMPUTER VISION. - ISSN 0920-5691. - 131:3(2023), pp. 644-658. [10.1007/s11263-022-01722-5]
Bipartite Graph Reasoning GANs for Person Pose and Facial Image Synthesis
Tang H.;Sebe N.
2023-01-01
Abstract
We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks: person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed bipartite graph reasoning (BGR) block aims to reason the long-range cross relations between the source and target pose in a bipartite graph, which mitigates some of the challenges caused by pose deformation. Moreover, we propose a new interaction-and-aggregation (IA) block to effectively update and enhance the feature representation capability of both a person’s shape and appearance in an interactive way. To further capture the change in pose of each part more precisely, we propose a novel part-aware bipartite graph reasoning (PBGR) block to decompose the task of reasoning the global structure transformation with a bipartite graph into learning different local transformations for different semantic body/face parts. Experiments on two challenging generation tasks with three public datasets demonstrate the effectiveness of the proposed methods in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.File | Dimensione | Formato | |
---|---|---|---|
Bipartite-IJCV.pdf
Solo gestori archivio
Descrizione: first online
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
s11263-022-01722-5_compressed.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
852.67 kB
Formato
Adobe PDF
|
852.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione