It has been suggested that the inferior longitudinal fasciculus (ILF) may play an important role in several aspects of language processing such as visual object recognition, visual memory, lexical retrieval, reading, and specifically, in naming visual stimuli. In particular, the ILF appears to convey visual information from the occipital lobe to the anterior temporal lobe (ATL). However, direct evidence proving the essential role of the ILF in language and semantics remains limited and controversial. The first aim of this study was to prove that patients with a brain glioma damaging the left ILF would be selectively impaired in picture naming of objects; the second aim was to prove that patients with glioma infiltrating the ATL would not be impaired due to functional reorganization of the lexical retrieval network elicited by the tumor. We evaluated 48 right-handed patients with neuropsychological testing and magnetic resonance imaging (MRI) before and after surgery for resection of a glioma infiltrating aspects of the left temporal, occipital, and/or parietal lobes; diffusion tensor imaging (DTI) was acquired preoperatively in all patients. Damage to the ILF, inferior frontal occipital fasciculus (IFOF), uncinate fasciculus (UF), arcuate fasciculus (AF), and associated cortical regions was assessed by means of preoperative tractography and pre-/pos-toperative MRI volumetry. The association of fascicles damage with patients' performance in picture naming and three additional cognitive tasks, namely, verbal fluency (two verbal non-visual tasks) and the Trail Making Test (a visual attentional task), was evaluated. Nine patients were impaired in the naming test before surgery. ILF damage was demonstrated with tractography in six (67%) of these patients. The odds of having an ILF damage was 6.35 (95% CI: 1.27–34.92) times higher among patients with naming deficit than among those without it. The ILF was the only fascicle to be significantly associated with naming deficit when all the fascicles were considered together, achieving an adjusted odds ratio of 15.73 (95% CI: 2.30–178.16, p = .010). Tumor infiltration of temporal and occipital cortices did not contribute to increase the odd of having a naming deficit. ILF damage was found to be selectively associated with picture naming deficit and not with lexical retrieval assessed by means of verbal fluency. Early after surgery, 29 patients were impaired in naming objects. The association of naming deficit with percentage of ILF resection (assessed by 3D-MRI) was confirmed (beta = −56.78 ± 20.34, p = .008) through a robust multiple linear regression model; no significant association was found with damage of IFOF, UF or AF. Crucially, postoperative neuropsychological evaluation showed that naming scores of patients with tumor infiltration of the anterior temporal cortex were not significantly associated with the percentage of ILF damage (rho = .180, p > .999), while such association was significant in patients without ATL infiltration (rho = −.556, p = .004). The ILF is selectively involved in picture naming of objects; however, the naming deficits are less severe in patients with glioma infiltration of the ATL probably due to release of an alternative route that may involve the posterior segment of the AF. The left ILF, connecting the extrastriatal visual cortex to the anterior region of the temporal lobe, is crucial for lexical retrieval on visual stimulus, such as in picture naming. However, when the ATL is also damaged, an alternative route is released and the performance improves.
Deficits in naming pictures of objects are associated with glioma infiltration of the inferior longitudinal fasciculus: A study with diffusion MRI tractography, volumetric MRI, and neuropsychology / Papagno, Costanza; Pascuzzo, Riccardo; Ferrante, Camilla; Casarotti, Alessandra; Riva, Marco; Antelmi, Luigi; Gennari, Antonio; Mattavelli, Giulia; Bizzi, Alberto. - In: HUMAN BRAIN MAPPING. - ISSN 1065-9471. - 44:10(2023), pp. 4011-4027. [10.1002/hbm.26325]
Deficits in naming pictures of objects are associated with glioma infiltration of the inferior longitudinal fasciculus: A study with diffusion MRI tractography, volumetric MRI, and neuropsychology
Papagno, Costanza
;
2023-01-01
Abstract
It has been suggested that the inferior longitudinal fasciculus (ILF) may play an important role in several aspects of language processing such as visual object recognition, visual memory, lexical retrieval, reading, and specifically, in naming visual stimuli. In particular, the ILF appears to convey visual information from the occipital lobe to the anterior temporal lobe (ATL). However, direct evidence proving the essential role of the ILF in language and semantics remains limited and controversial. The first aim of this study was to prove that patients with a brain glioma damaging the left ILF would be selectively impaired in picture naming of objects; the second aim was to prove that patients with glioma infiltrating the ATL would not be impaired due to functional reorganization of the lexical retrieval network elicited by the tumor. We evaluated 48 right-handed patients with neuropsychological testing and magnetic resonance imaging (MRI) before and after surgery for resection of a glioma infiltrating aspects of the left temporal, occipital, and/or parietal lobes; diffusion tensor imaging (DTI) was acquired preoperatively in all patients. Damage to the ILF, inferior frontal occipital fasciculus (IFOF), uncinate fasciculus (UF), arcuate fasciculus (AF), and associated cortical regions was assessed by means of preoperative tractography and pre-/pos-toperative MRI volumetry. The association of fascicles damage with patients' performance in picture naming and three additional cognitive tasks, namely, verbal fluency (two verbal non-visual tasks) and the Trail Making Test (a visual attentional task), was evaluated. Nine patients were impaired in the naming test before surgery. ILF damage was demonstrated with tractography in six (67%) of these patients. The odds of having an ILF damage was 6.35 (95% CI: 1.27–34.92) times higher among patients with naming deficit than among those without it. The ILF was the only fascicle to be significantly associated with naming deficit when all the fascicles were considered together, achieving an adjusted odds ratio of 15.73 (95% CI: 2.30–178.16, p = .010). Tumor infiltration of temporal and occipital cortices did not contribute to increase the odd of having a naming deficit. ILF damage was found to be selectively associated with picture naming deficit and not with lexical retrieval assessed by means of verbal fluency. Early after surgery, 29 patients were impaired in naming objects. The association of naming deficit with percentage of ILF resection (assessed by 3D-MRI) was confirmed (beta = −56.78 ± 20.34, p = .008) through a robust multiple linear regression model; no significant association was found with damage of IFOF, UF or AF. Crucially, postoperative neuropsychological evaluation showed that naming scores of patients with tumor infiltration of the anterior temporal cortex were not significantly associated with the percentage of ILF damage (rho = .180, p > .999), while such association was significant in patients without ATL infiltration (rho = −.556, p = .004). The ILF is selectively involved in picture naming of objects; however, the naming deficits are less severe in patients with glioma infiltration of the ATL probably due to release of an alternative route that may involve the posterior segment of the AF. The left ILF, connecting the extrastriatal visual cortex to the anterior region of the temporal lobe, is crucial for lexical retrieval on visual stimulus, such as in picture naming. However, when the ATL is also damaged, an alternative route is released and the performance improves.File | Dimensione | Formato | |
---|---|---|---|
Human Brain Mapping - 2023 - Papagno - Deficits in naming pictures of objects are associated with glioma infiltration of.pdf
accesso aperto
Descrizione: first online
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
4.92 MB
Formato
Adobe PDF
|
4.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione