In this paper, we study a geometric approach for constructing physical degrees of freedom for sequences of finite element spaces. Within the framework of finite element systems, we propose new degrees of freedom for the spaces PrΛk of polynomial differential forms and we verify numerically their unisolvence.
Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms / Zampa, E.; Alonso Rodriguez, A.; Rapetti, F.. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1019-7168. - 49:2(2023), pp. 1701-1731. [10.1007/s10444-022-10001-3]
Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms
Zampa E.;Alonso Rodriguez A.
;Rapetti F.
2023-01-01
Abstract
In this paper, we study a geometric approach for constructing physical degrees of freedom for sequences of finite element spaces. Within the framework of finite element systems, we propose new degrees of freedom for the spaces PrΛk of polynomial differential forms and we verify numerically their unisolvence.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s10444-022-10001-3.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
908.52 kB
Formato
Adobe PDF
|
908.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione