This thesis addresses the crucial problem of knowledge transfer and retention in deep neural networks. The ability to transfer knowledge from previously learned tasks and retain it for future use is essential for machine learning models to continually adapt to new tasks and improve their overall performance. In principle, knowledge can be transferred between any type of task, but we believe it to be particularly challenging in the field of computer vision, where the size and diversity of visual data often result in high compute requirements and the need for large, complex models. Hence, we analyze transfer and retention learning between unsupervised and supervised visual tasks, which form the main focus of this thesis. We categorize our efforts into several knowledge transfer and retention paradigms, and we tackle them with several contributions for the scientific community. The thesis proposes settings and methods based on knowledge distillation and self-supervised learning techniques. In particular, we devise two novel continual learning settings and seven new methods for knowledge transfer and retention, setting new state-of-the-art in a wide range of tasks. In conclusion, this thesis provides a valuable contribution to the field of computer vision and machine learning and sets a foundation for future work in this area.

Knowledge transfer and retention in deep neural networks / Fini, Enrico. - (2023 Apr 17), pp. 1-227. [10.15168/11572_374590]

Knowledge transfer and retention in deep neural networks

Fini, Enrico
2023-04-17

Abstract

This thesis addresses the crucial problem of knowledge transfer and retention in deep neural networks. The ability to transfer knowledge from previously learned tasks and retain it for future use is essential for machine learning models to continually adapt to new tasks and improve their overall performance. In principle, knowledge can be transferred between any type of task, but we believe it to be particularly challenging in the field of computer vision, where the size and diversity of visual data often result in high compute requirements and the need for large, complex models. Hence, we analyze transfer and retention learning between unsupervised and supervised visual tasks, which form the main focus of this thesis. We categorize our efforts into several knowledge transfer and retention paradigms, and we tackle them with several contributions for the scientific community. The thesis proposes settings and methods based on knowledge distillation and self-supervised learning techniques. In particular, we devise two novel continual learning settings and seven new methods for knowledge transfer and retention, setting new state-of-the-art in a wide range of tasks. In conclusion, this thesis provides a valuable contribution to the field of computer vision and machine learning and sets a foundation for future work in this area.
17-apr-2023
XXXV
2022-2023
Ingegneria e scienza dell'Informaz (29/10/12-)
Industrial Innovation
Ricci, Elisa
Moin Nabi
no
GERMANIA
Inglese
File in questo prodotto:
File Dimensione Formato  
phd_unitn_Fini_Enrico.pdf

accesso aperto

Descrizione: Main Document
Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 20.02 MB
Formato Adobe PDF
20.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/374590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact