In this paper, we present a new explicit second-order accurate structure-preserving finite volume scheme for the first-order hyperbolic reformulation of the Navier–Stokes–Korteweg equations. The model combines the unified Godunov-Peshkov-Romenski model of continuum mechanics with a recently proposed hyperbolic reformulation of the Euler–Korteweg system. The considered PDE system includes an evolution equation for a gradient field that is by construction endowed with a curl-free constraint. The new numerical scheme presented here relies on the use of vertex-based staggered grids and is proven to preserve the curl constraint exactly at the discrete level, up to machine precision. Besides a theoretical proof, we also show evidence of this property via a set of numerical tests, including a stationary droplet, non-condensing bubbles as well as non-stationary Ostwald ripening test cases with several bubbles. We present quantitative and qualitative comparisons of the numerical solution, both, when the new structure-preserving discretization is applied and when it is not. In particular for under-resolved simulations on coarse grids we show that some numerical solutions tend to blow up when the curl-free constraint is not respected.
A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations / Dhaouadi, F.; Dumbser, M.. - In: MATHEMATICS. - ISSN 2227-7390. - 11:4(2023), pp. 1-25. [10.3390/math11040876]
A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations
Dhaouadi F.
;Dumbser M.
2023-01-01
Abstract
In this paper, we present a new explicit second-order accurate structure-preserving finite volume scheme for the first-order hyperbolic reformulation of the Navier–Stokes–Korteweg equations. The model combines the unified Godunov-Peshkov-Romenski model of continuum mechanics with a recently proposed hyperbolic reformulation of the Euler–Korteweg system. The considered PDE system includes an evolution equation for a gradient field that is by construction endowed with a curl-free constraint. The new numerical scheme presented here relies on the use of vertex-based staggered grids and is proven to preserve the curl constraint exactly at the discrete level, up to machine precision. Besides a theoretical proof, we also show evidence of this property via a set of numerical tests, including a stationary droplet, non-condensing bubbles as well as non-stationary Ostwald ripening test cases with several bubbles. We present quantitative and qualitative comparisons of the numerical solution, both, when the new structure-preserving discretization is applied and when it is not. In particular for under-resolved simulations on coarse grids we show that some numerical solutions tend to blow up when the curl-free constraint is not respected.File | Dimensione | Formato | |
---|---|---|---|
Dhaouadi, Dumbser 2023 - A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione