Airborne radar sounders (RSs) are active sensors that acquire subsurface data for Earth observation. RS data (radargrams) provide information on buried geology by imaging subsurface dielectric discontinuities. Recently, several automatic RS target identification techniques have been proposed, with convolutional neural network (CNN)-based methods being the most promising. However, they require numerous labeled data that are hard to retrieve in the subsurface environment targeted by RS. Furthermore, they are not designed to effectively deal with problems showing unbalanced classes, such as RS segmentation. We introduce newer cryosphere subsurface targets in the inland and coastal areas that can have a very low probability. To deal with the higher complexity and variability than previous works, we propose a transfer learning framework for RS data to mitigate the need for a large amount of labeled data and handle extremely unbalanced target classes. Herewith, we propose two transfer learning-based mechanisms for radargram segmentation. The first uses a lightweight architecture whose pretraining is supervised with a large labeled dataset from other domains. The second mechanism uses a deep architecture pretrained in the RS domain, considering the pretest task of radargram reconstruction. The architectures are modified to deal with the characteristics of RS data and the radargram segmentation task. Finally, both methods are fine-tuned with a few labeled radargrams to learn radargram features useful for segmentation. We reveal experimental results on radargrams acquired in Antarctica by MCoRDS-1 and MCoRDS-3. The results demonstrate the effectiveness of transfer learning for radargram segmentation.

A weakly supervised transfer learning approach for radar sounder data segmentation / Hoyo, Garcia; Donini, E.; Bovolo, F.. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 1558-0644. - 61:(2023), pp. 450101801-450101818. [10.1109/TGRS.2023.3252939]

A weakly supervised transfer learning approach for radar sounder data segmentation

Hoyo Garcia;Donini E.;Bovolo F.
2023-01-01

Abstract

Airborne radar sounders (RSs) are active sensors that acquire subsurface data for Earth observation. RS data (radargrams) provide information on buried geology by imaging subsurface dielectric discontinuities. Recently, several automatic RS target identification techniques have been proposed, with convolutional neural network (CNN)-based methods being the most promising. However, they require numerous labeled data that are hard to retrieve in the subsurface environment targeted by RS. Furthermore, they are not designed to effectively deal with problems showing unbalanced classes, such as RS segmentation. We introduce newer cryosphere subsurface targets in the inland and coastal areas that can have a very low probability. To deal with the higher complexity and variability than previous works, we propose a transfer learning framework for RS data to mitigate the need for a large amount of labeled data and handle extremely unbalanced target classes. Herewith, we propose two transfer learning-based mechanisms for radargram segmentation. The first uses a lightweight architecture whose pretraining is supervised with a large labeled dataset from other domains. The second mechanism uses a deep architecture pretrained in the RS domain, considering the pretest task of radargram reconstruction. The architectures are modified to deal with the characteristics of RS data and the radargram segmentation task. Finally, both methods are fine-tuned with a few labeled radargrams to learn radargram features useful for segmentation. We reveal experimental results on radargrams acquired in Antarctica by MCoRDS-1 and MCoRDS-3. The results demonstrate the effectiveness of transfer learning for radargram segmentation.
2023
Hoyo, Garcia; Donini, E.; Bovolo, F.
A weakly supervised transfer learning approach for radar sounder data segmentation / Hoyo, Garcia; Donini, E.; Bovolo, F.. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 1558-0644. - 61:(2023), pp. 450101801-450101818. [10.1109/TGRS.2023.3252939]
File in questo prodotto:
File Dimensione Formato  
8_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 405.33 kB
Formato Adobe PDF
405.33 kB Adobe PDF   Visualizza/Apri
1_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.13 MB
Formato Adobe PDF
10.13 MB Adobe PDF   Visualizza/Apri
9_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation_compressed1.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 162.48 kB
Formato Adobe PDF
162.48 kB Adobe PDF   Visualizza/Apri
18_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF   Visualizza/Apri
15_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.51 MB
Formato Adobe PDF
7.51 MB Adobe PDF   Visualizza/Apri
10_PDFsam_Wallace_virusDroseu_VirEvolA_Weakly_Supervised_Transfer_Learning_Approach_for_Radar_Sounder_Data_Segmentation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.58 MB
Formato Adobe PDF
7.58 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/373267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact