It has been shown that artificial intelligence (AI) may yield rapid and improved detection of coronavirus disease 2019 (COVID-19) by integrating chest CT findings with clinical symptoms, exposure history and laboratory testing (1). Early detection and reduction of workload for healthcare workers have been proposed as main applications of AI in COVID-19 pandemic (2), despite limitations, constraints and pitfalls (3,4).

The challenge of COVID-19 low disease prevalence for artificial intelligence models: report of 1,610 patients / Quattrocchi, Carlo C.; Mallio, Carlo A.; Presti, Gabriele; Beomonte Zobel, Bruno; Cardinale, Jacopo; Iozzino, Mario; Della Sala, Sabino W.. - In: QUANTITATIVE IMAGING IN MEDICINE AND SURGERY. - ISSN 2223-4292. - 10:9(2020), pp. 1891-1893. [10.21037/qims-20-782]

The challenge of COVID-19 low disease prevalence for artificial intelligence models: report of 1,610 patients

Quattrocchi, Carlo C.;
2020-01-01

Abstract

It has been shown that artificial intelligence (AI) may yield rapid and improved detection of coronavirus disease 2019 (COVID-19) by integrating chest CT findings with clinical symptoms, exposure history and laboratory testing (1). Early detection and reduction of workload for healthcare workers have been proposed as main applications of AI in COVID-19 pandemic (2), despite limitations, constraints and pitfalls (3,4).
2020
9
Quattrocchi, Carlo C.; Mallio, Carlo A.; Presti, Gabriele; Beomonte Zobel, Bruno; Cardinale, Jacopo; Iozzino, Mario; Della Sala, Sabino W.
The challenge of COVID-19 low disease prevalence for artificial intelligence models: report of 1,610 patients / Quattrocchi, Carlo C.; Mallio, Carlo A.; Presti, Gabriele; Beomonte Zobel, Bruno; Cardinale, Jacopo; Iozzino, Mario; Della Sala, Sabino W.. - In: QUANTITATIVE IMAGING IN MEDICINE AND SURGERY. - ISSN 2223-4292. - 10:9(2020), pp. 1891-1893. [10.21037/qims-20-782]
File in questo prodotto:
File Dimensione Formato  
qims-10-09-1891.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 249.4 kB
Formato Adobe PDF
249.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/372509
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact