We describe the automorphism groups of finite p-groups arising naturally via Hessian determinantal representations of elliptic curves defined over number fields. Moreover, we derive explicit formulas for the orders of these automorphism groups for elliptic curves of j-invariant 1728 given in Weierstrass form. We interpret these orders in terms of the numbers of 3-torsion points (or flex points) of the relevant curves over finite fields. Our work greatly generalizes and conceptualizes previous examples given by du Sautoy and Vaughan-Lee. It explains, in particular, why the orders arising in these examples are polynomial on Frobenius sets and vary with the primes in a nonquasipolynomial manner.

Hessian matrices, automorphisms of p-groups, and torsion points of elliptic curves / Stanojkovski, M.; Voll, C.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 381:1-2(2021), pp. 593-629. [10.1007/s00208-021-02193-8]

Hessian matrices, automorphisms of p-groups, and torsion points of elliptic curves

Stanojkovski M.;
2021-01-01

Abstract

We describe the automorphism groups of finite p-groups arising naturally via Hessian determinantal representations of elliptic curves defined over number fields. Moreover, we derive explicit formulas for the orders of these automorphism groups for elliptic curves of j-invariant 1728 given in Weierstrass form. We interpret these orders in terms of the numbers of 3-torsion points (or flex points) of the relevant curves over finite fields. Our work greatly generalizes and conceptualizes previous examples given by du Sautoy and Vaughan-Lee. It explains, in particular, why the orders arising in these examples are polynomial on Frobenius sets and vary with the primes in a nonquasipolynomial manner.
2021
1-2
Stanojkovski, M.; Voll, C.
Hessian matrices, automorphisms of p-groups, and torsion points of elliptic curves / Stanojkovski, M.; Voll, C.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 381:1-2(2021), pp. 593-629. [10.1007/s00208-021-02193-8]
File in questo prodotto:
File Dimensione Formato  
hessian.pdf

accesso aperto

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 572.31 kB
Formato Adobe PDF
572.31 kB Adobe PDF Visualizza/Apri
s00208-021-02193-8.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 559.72 kB
Formato Adobe PDF
559.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/372388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact